This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162170 #17 Aug 16 2025 09:36:58 %S A162170 1,1,1,1,0,1,2,0,3,1,5,0,6,0,1,16,0,20,0,5,1,61,0,75,0,15,0,1,272,0, %T A162170 336,0,70,0,7,1,1385,0,1708,0,350,0,28,0,1,7936,0,9792,0,2016,0,168,0, %U A162170 9,1,50521,0,62325,0,12810,0,1050,0,45,0,1,353792,0,436480,0,89760,0,7392,0 %N A162170 Matrix inverse of A162169. %C A162170 First column appears to be A000111. Third column is A162171. Row sums minus A000035 appears to be A062272. %C A162170 The above remarks are correct. - _Peter Bala_, Sep 08 2021 %F A162170 From _Peter Bala_, Sep 08 2021: (Start) %F A162170 Assuming an offset of 0: T(2*n+1,2*n+1) = 1 for n >= 0 else otherwise T(n,k) = (1 + (-1)^k)/2*binomial(n,k)*A000111(n-k). %F A162170 E.g.f.: (sec(x) + tan(x))*cosh(t*x) + sinh(t*x) = 1 + (1 + t)*x + (1 + t^2)*x^2/2! + (2 + 3*t^2 + t^3)*x^3/3! + .... (End) %e A162170 Table begins: %e A162170 1 %e A162170 1 1 %e A162170 1 0 1 %e A162170 2 0 3 1 %e A162170 5 0 6 0 1 %e A162170 16 0 20 0 5 1 %e A162170 61 0 75 0 15 0 1 %p A162170 A000111 := n -> n!*coeff(series(sec(x) + tan(x), x, n+1), x, n): %p A162170 seq(seq(0^(n-k)*((1 - (-1)^k)*(1/2))*((1 - (-1)^n)*(1/2)) + ((1 + (-1)^k)*(1/2))*binomial(n, k)*A000111(n-k), k = 0..n), n = 0..11); # _Peter Bala_, Sep 08 2021 %o A162170 (PARI) T(n, k) = if (k % 2, binomial(n-1, k-1) * (-1)^floor((n+k-1)/2), if (n==k, 1, 0)); %o A162170 tabl(nn) = {m = matrix(nn, nn, n, k, if (n>=k, T(n,k), 0)); m = m^(-1); for (n=1, nn, for (k=1, n, print1(m[n,k], ", ");); print(););} \\ _Michel Marcus_, Jun 17 2015 %Y A162170 Cf. A000111, A162171, A062272. %K A162170 nonn,tabl,easy %O A162170 1,7 %A A162170 _Mats Granvik_, Jun 27 2009