This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162171 #35 Jun 14 2022 08:51:25 %S A162171 1,3,6,20,75,336,1708,9792,62325,436480,3334386,27595776,245951615, %T A162171 2348666880,23923317720,258910994432,2966901358185,35886973648896, %U A162171 456927138333790,6108665873694720,85555744482868275,1252729007440396288,19140289332506060676 %N A162171 Third column of A162170. %H A162171 J. A. Palacios, A. Bhaskar, F. Disanto and N. A. Rosenberg, <a href="https://doi.org/10.1007/s00285-022-01748-w">Enumeration of binary trees compatible with a perfect phylogeny</a>, J. Math. Biol. 84 (2022), 54. %F A162171 a(n) = Sum_{k=1..floor(n/2)} (-1)^(floor(n/2)+k) * binomial(n+1, 2*k) * a(2*k-1) for n > 1. - _Mike Tryczak_, Jun 18 2015 %F A162171 a(n) = n*(n+1)/2 * A000111(n-1) (conjectured). - _Mike Tryczak_, Jun 17 2015 %F A162171 The above conjecture by Tryczak is correct. With an offset of 2, the e.g.f. is x^2/2!*(sec(x) + tan(x)). - _Peter Bala_, Sep 08 2021 %F A162171 a(n) is the number of ranked unlabeled binary tree shapes compatible with the binary perfect phylogeny (n,3). - _Noah A Rosenberg_, Jun 03 2022 %o A162171 (PARI) T(n, k) = if (k % 2, binomial(n-1, k-1) * (-1)^floor((n+k-1)/2), if (n==k, 1 , 0)); %o A162171 lista(nn) = {m = matrix(nn, nn, n, k, if (n>=k, T(n,k), 0)); m = m^(-1); for (n=3, nn, print1(m[n,3], ", "));} \\ _Michel Marcus_, Jun 17 2015 %o A162171 (PARI) lista(nn) = { a = [1]; for(n = 2, nn, a = concat(a, sum(k = 1, j = floor(n/2), (-1)^(j+k) * binomial(n+1, 2*k) * a[2*k-1]))); print(a) } \\ _Mike Tryczak_, Jun 18 2015 %Y A162171 Cf. A162170, A000111. %K A162171 nonn,easy %O A162171 1,2 %A A162171 _Mats Granvik_, Jun 27 2009 %E A162171 Sequence corrected and extended by _Mike Tryczak_, Jun 17 2015