A162246 Swinging polynomials, coefficients read by rows.
1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 6, 3, 3, 1, 1, 4, 4, 12, 6, 12, 4, 4, 1, 1, 5, 5, 20, 10, 30, 10, 20, 5, 5, 1, 1, 6, 6, 30, 15, 60, 20, 60, 15, 30, 6, 6, 1, 1, 7, 7, 42, 21, 105, 35, 140, 35, 105, 21, 42, 7, 7, 1
Offset: 0
Examples
The central coefficients are marked by []. [1] 1,[1],1 1,2,[2],2,1 1,3,3,[6],3,3,1 1,4,4,12,[6],12,4,4,1 1,5,5,20,10,[30],10,20,5,5,1 1,6,6,30,15,60,[20],60,15,30,6,6,1 1,7,7,42,21,105,35,[140],35,105,21,42,7,7,1 p(0,x) = 1 p(1,x) = x^2+x+1 p(2,x) = x^4+2x^3+2x^2+2x+1 p(3,x) = x^6+3x^5+3x^4+6x^3+3x^2+3x+1 p(4,x) = x^8+4x^7+4x^6+12x^5+6x^4+12x^3+4x^2+4x+1 p(5,x) = x^10+5x^9+5x^8+20x^7+10x^6+30x^5+10x^4+20x^3+5x^2+5x+1
Links
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Programs
-
Maple
p := (n,x) -> (1+x^2)^n+n*x*(1+x^2)^(n-1): seq(print(seq(coeff(expand(p(n,x)),x,i),i=0..2*n)),n=0..7); T := (n,k) -> n!/((n-ceil(k/2))!*floor(k/2)!); seq(print(seq(T(n,k),k=0..2*n)),n=0..7);
-
Mathematica
t[n_, k_] := If[EvenQ[k], Binomial[n, k/2], Binomial[n, (k-1)/2]*(n-(k-1)/2)]; Table[t[n, k], {n, 0, 7}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
Formula
T(n,k) = n!/((n-ceiling(k/2))!*floor(k/2)!).
Comments