cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162246 Swinging polynomials, coefficients read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 6, 3, 3, 1, 1, 4, 4, 12, 6, 12, 4, 4, 1, 1, 5, 5, 20, 10, 30, 10, 20, 5, 5, 1, 1, 6, 6, 30, 15, 60, 20, 60, 15, 30, 6, 6, 1, 1, 7, 7, 42, 21, 105, 35, 140, 35, 105, 21, 42, 7, 7, 1
Offset: 0

Views

Author

Peter Luschny, Jun 28 2009

Keywords

Comments

Let p(n,x) = (1+x^2)^n+n*x*(1+x^2)^(n-1), then T(n,k) are the coefficients of these polynomials, read by rows, n = 0,1,...
The central numbers of the rows, i.e., the coefficients of x^n of p(n,x), are the swinging factorial numbers A056040(n).
Row sums: sum_{k=0..2n} T(n,k) = A001792(n).
sum_{k=0..2n} isodd(n+k)T(n,k) = 2^n(isodd(n)+(n/2)isodd(n+1))
= 0, 2, 4, 8, 32, 32, 192, 128, 1024, 512, 5120, ...
sum_{k=0..2n} iseven(n+k)T(n,k) = 2^n(isodd(n)(n/2)+isodd(n+1))
= 1, 1, 4, 12, 16, 80, 64, 448, 256, 2304, 1024, ...

Examples

			The central coefficients are marked by [].
[1]
1,[1],1
1,2,[2],2,1
1,3,3,[6],3,3,1
1,4,4,12,[6],12,4,4,1
1,5,5,20,10,[30],10,20,5,5,1
1,6,6,30,15,60,[20],60,15,30,6,6,1
1,7,7,42,21,105,35,[140],35,105,21,42,7,7,1
p(0,x) = 1
p(1,x) = x^2+x+1
p(2,x) = x^4+2x^3+2x^2+2x+1
p(3,x) = x^6+3x^5+3x^4+6x^3+3x^2+3x+1
p(4,x) = x^8+4x^7+4x^6+12x^5+6x^4+12x^3+4x^2+4x+1
p(5,x) = x^10+5x^9+5x^8+20x^7+10x^6+30x^5+10x^4+20x^3+5x^2+5x+1
		

Crossrefs

Programs

  • Maple
    p := (n,x) -> (1+x^2)^n+n*x*(1+x^2)^(n-1):
    seq(print(seq(coeff(expand(p(n,x)),x,i),i=0..2*n)),n=0..7);
    T := (n,k) -> n!/((n-ceil(k/2))!*floor(k/2)!);
    seq(print(seq(T(n,k),k=0..2*n)),n=0..7);
  • Mathematica
    t[n_, k_] := If[EvenQ[k], Binomial[n, k/2], Binomial[n, (k-1)/2]*(n-(k-1)/2)]; Table[t[n, k], {n, 0, 7}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

Formula

T(n,k) = n!/((n-ceiling(k/2))!*floor(k/2)!).