This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162253 #16 May 09 2025 07:11:37 %S A162253 2,3,5,11,1787,5381,5381,5381,648391,648391,414507281407,414507281407 %N A162253 Smallest value of the n-fold nesting prime(prime(...(k)...)) with a prime digital sum. %C A162253 n-deep nestings prime(prime(...(prime(k))...)) = prime^n(k) can be arranged in a table T(n,k), %C A162253 2 3 5 7 11 13 : A000040, n=0 %C A162253 3 5 11 17 31 41 : A006450, n=1 %C A162253 5 11 31 59 127 179 : A038580, n=2 %C A162253 11 31 127 277 709 1063 : A049090 %C A162253 31 127 709 1787 5381 8527 : A049203 %C A162253 127 709 5381 15299 52711 87803 : A049202 %C A162253 a(n) is the leftmost value in the n-th row (the one with the smallest k) with a digit sum which is prime. %C A162253 In order to generate the entries a(11) and a(12), prime2() was used which reads a large 880 gigabyte file of all primes < 10^12. %F A162253 {min A000040^n(k): A000040^n(k) in A028834}. - _R. J. Mathar_, Jul 16 2009 %e A162253 1st nesting is prime(1) = 2 which has a prime digit sum: a(0). The second nesting is prime(prime(1)) = 3, which has a prime digits sum: a(1)=3. The 3rd and 4th nesting also succeed for k=1 while the fifth nesting prime(prime(prime(prime(prime(4))))) = 1787 is the first occurrence of sum of digits is prime. Here nesting for k = 1,2,3 does not sum to a prime number. %o A162253 (PARI) for(j=1,12,print(j","sodip2(100,j)",")); %o A162253 sodip2(n,m) = \\multiple nesting of prime(prime(prime..(n) %o A162253 { %o A162253 local(s=0,a,x,y,j,p); %o A162253 for(x=1,n, %o A162253 for(i=1,m,p=prime2(p)); %o A162253 a=eval(Vec(Str(p))); %o A162253 y=sum(j=1,length(a),a[j]); %o A162253 if(isprime(y),return(p)); %o A162253 ) %o A162253 } %K A162253 nonn,base,more %O A162253 1,1 %A A162253 _Cino Hilliard_, Jun 29 2009 %E A162253 Definition rephrased by _R. J. Mathar_, Jul 16 2009