This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162257 #19 Aug 30 2018 23:32:14 %S A162257 -2,7,33,82,160,273,427,628,882,1195,1573,2022,2548,3157,3855,4648, %T A162257 5542,6543,7657,8890,10248,11737,13363,15132,17050,19123,21357,23758, %U A162257 26332,29085,32023,35152,38478,42007,45745,49698,53872,58273,62907,67780 %N A162257 a(n) = (2*n^3 + 5*n^2 - 11*n)/2. %H A162257 Vincenzo Librandi, <a href="/A162257/b162257.txt">Table of n, a(n) for n = 1..1000</a> %H A162257 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A162257 Row sums from A155550: a(n) = Sum_{m=1..n} 2*m*n + m + n - 6. %F A162257 From _Vincenzo Librandi_, Mar 04 2012: (Start) %F A162257 G.f.: x*(-2 + 15*x - 7*x^2)/(1-x)^4. %F A162257 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End) %p A162257 A162257:=n->(2*n^3+5*n^2-11*n)/2: seq(A162257(n), n=1..80); # _Wesley Ivan Hurt_, Jan 30 2017 %t A162257 CoefficientList[Series[(-2+15*x-7*x^2)/(1-x)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {-2, 7, 33, 82}, 50] (* _Vincenzo Librandi_, Mar 04 2012 *) %Y A162257 Cf. A155550. %K A162257 sign,easy %O A162257 1,1 %A A162257 _Vincenzo Librandi_, Jun 29 2009 %E A162257 New name from _Vincenzo Librandi_, Mar 04 2012