cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162258 a(n) = (2*n^3 + 5*n^2 - 9*n)/2.

This page as a plain text file.
%I A162258 #16 Aug 31 2018 02:56:22
%S A162258 -1,9,36,86,165,279,434,636,891,1205,1584,2034,2561,3171,3870,4664,
%T A162258 5559,6561,7676,8910,10269,11759,13386,15156,17075,19149,21384,23786,
%U A162258 26361,29115,32054,35184,38511,42041,45780,49734,53909,58311,62946,67820
%N A162258 a(n) = (2*n^3 + 5*n^2 - 9*n)/2.
%H A162258 Vincenzo Librandi, <a href="/A162258/b162258.txt">Table of n, a(n) for n = 1..1000</a>
%H A162258 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (4, -6, 4, -1).
%F A162258 Row sums from A155546: a(n) = Sum_{m=1..n} (2*m*n + m + n - 5).
%F A162258 From _Vincenzo Librandi_, Mar 04 2012: (Start)
%F A162258 G.f.: x*(-1 + 13*x - 6*x^2)/(1-x)^4.
%F A162258 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
%t A162258 LinearRecurrence[{4, -6, 4, -1}, {-1, 9, 36, 86}, 50] (* or *) CoefficientList[Series[(2+7*x-3*x^2)/(1-x)^4, {x, 0, 50}], x] (* _Vincenzo Librandi_, Mar 04 2012 *)
%Y A162258 Cf. A155546.
%K A162258 sign,easy
%O A162258 1,2
%A A162258 _Vincenzo Librandi_, Jun 29 2009
%E A162258 New name from _Vincenzo Librandi_, Mar 04 2012