This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162262 #17 Jul 03 2023 13:25:40 %S A162262 -3,5,30,78,155,267,420,620,873,1185,1562,2010,2535,3143,3840,4632, %T A162262 5525,6525,7638,8870,10227,11715,13340,15108,17025,19097,21330,23730, %U A162262 26303,29055,31992,35120,38445,41973,45710,49662,53835,58235,62868,67740 %N A162262 a(n) = (2*n^3 + 5*n^2 - 13*n)/2. %H A162262 Vincenzo Librandi, <a href="/A162262/b162262.txt">Table of n, a(n) for n = 1..1000</a> %H A162262 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A162262 Row sums from A144670: a(n) = Sum_{m=1..n} (2*m*n + m + n - 7). %F A162262 From _Vincenzo Librandi_, Mar 05 2012: (Start) %F A162262 G.f.: x*(-3 + 17*x - 8*x^2)/(1-x)^4. %F A162262 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End) %t A162262 LinearRecurrence[{4, -6, 4, -1}, {-3, 5, 30, 78}, 50] (* or *) CoefficientList[Series[(-3+17*x-8*x^2)/(1-x)^4,{x,0,50}],x] (* _Vincenzo Librandi_, Mar 04 2012 *) %t A162262 Table[(2n^3+5n^2-13n)/2,{n,60}] (* _Harvey P. Dale_, Jul 03 2023 *) %Y A162262 Cf. A144670. %K A162262 sign,easy %O A162262 1,1 %A A162262 _Vincenzo Librandi_, Jun 29 2009 %E A162262 New name from _Vincenzo Librandi_, Mar 05 2012