cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162266 a(n) = (2*n^3 + 5*n^2 + 21*n)/2.

This page as a plain text file.
%I A162266 #16 Aug 31 2018 02:56:45
%S A162266 14,39,81,146,240,369,539,756,1026,1355,1749,2214,2756,3381,4095,4904,
%T A162266 5814,6831,7961,9210,10584,12089,13731,15516,17450,19539,21789,24206,
%U A162266 26796,29565,32519,35664,39006,42551,46305,50274,54464,58881,63531
%N A162266 a(n) = (2*n^3 + 5*n^2 + 21*n)/2.
%H A162266 Vincenzo Librandi, <a href="/A162266/b162266.txt">Table of n, a(n) for n = 1..1000</a>
%H A162266 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A162266 Row sums from A155704: a(n) = Sum_{m=1..n} (2*m*n + m + n + 10).
%F A162266 From _Vincenzo Librandi_, Mar 05 2012: (Start)
%F A162266 G.f.: x*(14 - 17*x + 9*x^2)/(1-x)^4.
%F A162266 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
%t A162266 LinearRecurrence[{4, -6, 4, -1}, {14, 39, 81, 146}, 50] (* or *) CoefficientList[Series[(14-17*x+9*x^2)/(1-x)^4,{x,0,40}],x] (* _Vincenzo Librandi_, Mar 05 2012 *)
%Y A162266 Cf. A155704.
%K A162266 nonn,easy
%O A162266 1,1
%A A162266 _Vincenzo Librandi_, Jun 29 2009
%E A162266 New name from _Vincenzo Librandi_, Mar 05 2012