This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162271 #15 Sep 08 2022 08:45:46 %S A162271 5,22,106,540,2836,15128,81320,438768,2371664,12830560,69441184, %T A162271 375901632,2035036480,11017668992,59650841216,322959363840, %U A162271 1748563133696,9467073975808,51256707934720,277514627816448 %N A162271 a(n) = ((5+sqrt(2))*(4+sqrt(2))^n + (5-sqrt(2))*(4-sqrt(2))^n)/2. %C A162271 Fourth binomial transform of A162396. %H A162271 G. C. Greubel, <a href="/A162271/b162271.txt">Table of n, a(n) for n = 0..1000</a> %H A162271 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-14). %F A162271 a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 5, a(1) = 22. %F A162271 G.f.: (5-18*x)/(1-8*x+14*x^2). %t A162271 LinearRecurrence[{8,-14}, {5,22}, 50] (* _G. C. Greubel_, Oct 02 2018 *) %t A162271 Table[((5+Sqrt[2])(4+Sqrt[2])^n+(5-Sqrt[2])(4-Sqrt[2])^n)/2,{n,0,20}]// Simplify (* _Harvey P. Dale_, May 26 2019 *) %o A162271 (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+r)*(4+r)^n+(5-r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Jul 02 2009 %o A162271 (PARI) x='x+O('x^50); Vec((5-18*x)/(1-8*x+14*x^2)) \\ _G. C. Greubel_, Oct 02 2018 %Y A162271 Cf. A162396. %K A162271 nonn %O A162271 0,1 %A A162271 Al Hakanson (hawkuu(AT)gmail.com), Jun 29 2009 %E A162271 Edited and extended beyond a(5) by _Klaus Brockhaus_, Jul 02 2009