cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162288 Number of reduced words of length n in the Weyl group D_11.

This page as a plain text file.
%I A162288 #37 Mar 17 2025 17:20:16
%S A162288 1,11,65,275,934,2706,6941,16159,34749,69927,132991,240900,418187,
%T A162288 699193,1130581,1774058,2709201,4036252,5878719,8385597,11733007,
%U A162288 16125043,21793619,28997122,38017704,49157086,62730799,79060850,98466873,121255904,147711001,178079011
%N A162288 Number of reduced words of length n in the Weyl group D_11.
%D A162288 N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10a, page 231, W(t).
%D A162288 J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
%H A162288 Andrew Howroyd, <a href="/A162288/b162288.txt">Table of n, a(n) for n = 0..110</a>
%H A162288 <a href="/index/Gre#GROWTH">Index entries for growth series for groups</a>
%F A162288 The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by _N. J. A. Sloane_, Aug 07 2021]. This is a row of the triangle in A162206.
%p A162288 # Growth series for D_k, truncated to terms of order M. - _N. J. A. Sloane_, Aug 07 2021
%p A162288 f := proc(m::integer) (1-x^m)/(1-x) ; end proc:
%p A162288 g := proc(k,M) local a,i; global f;
%p A162288 a:=f(k)*mul(f(2*i),i=1..k-1);
%p A162288 seriestolist(series(a,x,M+1));
%p A162288 end proc;
%t A162288 x = y + y O[y]^(n^2);
%t A162288 (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* _Jean-François Alcover_, Mar 25 2020, from A162206 *)
%t A162288 x =.; n = 11; CoefficientList[ Product[1 - x^(2 k), {k, 1, n - 1}] (1 - x^n) /(1 - x)^n // Expand, x] (* _Michael Somos_, Aug 06 2021 *)
%Y A162288 Row 11 of A162206.
%Y A162288 Growth series for groups D_n, n = 3,...,50: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379, A162380, A162381, A162384, A162388, A162389, A162392, A162399, A162402, A162403, A162411, A162412, A162413, A162418, A162452, A162456, A162461, A162469, A162492.
%K A162288 nonn,fini,full
%O A162288 0,2
%A A162288 _John Cannon_ and _N. J. A. Sloane_, Dec 01 2009
%E A162288 Entry revised by _N. J. A. Sloane_, Jan 17 2016