This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162300 #19 Mar 17 2025 17:05:30 %S A162300 1,13,90,442,1728,5720,16653,43745,105586,237354,502113,1007773, %T A162300 1931631,3554746,6308706,10837593,18078112,29360890,46535840,72124195, %U A162300 109499325,163097740,238660747,343506072,486827392,680018170,937014482,1274649714 %N A162300 Number of reduced words of length n in the Weyl group D_13. %D A162300 N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.) %D A162300 J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial. %H A162300 Andrew Howroyd, <a href="/A162300/b162300.txt">Table of n, a(n) for n = 0..156</a> %H A162300 <a href="/index/Gre#GROWTH">Index entries for growth series for groups</a> %F A162300 The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by _N. J. A. Sloane_, Aug 07 2021]. This is a row of the triangle in A162206. %p A162300 # Growth series for D_k, truncated to terms of order M. - _N. J. A. Sloane_, Aug 07 2021 %p A162300 f := proc(m::integer) (1-x^m)/(1-x) ; end proc: %p A162300 g := proc(k,M) local a,i; global f; %p A162300 a:=f(k)*mul(f(2*i),i=1..k-1); %p A162300 seriestolist(series(a,x,M+1)); %p A162300 end proc; %t A162300 n = 13; %t A162300 x = y + y O[y]^(n^2); %t A162300 (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* _Jean-François Alcover_, Mar 25 2020, from A162206 *) %Y A162300 Row 13 of A162206. %Y A162300 Growth series for groups D_n, n = 3,...,50: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379, A162380, A162381, A162384, A162388, A162389, A162392, A162399, A162402, A162403, A162411, A162412, A162413, A162418, A162452, A162456, A162461, A162469, A162492. %K A162300 nonn,fini,full %O A162300 0,2 %A A162300 _John Cannon_ and _N. J. A. Sloane_, Dec 01 2009