A162302 Numbers n such that (A000203(n)+28)/n is an integer.
1, 28, 29, 62, 84, 182, 230, 252, 344, 756, 944, 2268, 6710, 6804, 20264, 20412, 36224, 61236, 183708, 538112, 551124, 1653372, 2085710, 4960116, 14503550, 14880348, 33665024, 44641044, 55328384, 133923132, 134438912, 401769396, 615206030, 1082574464
Offset: 1
Keywords
Links
- Graeme L. Cohen, Herman J. J. te Riele, Iterating the Sum-of-Divisors Function, Experimental Mathematics, Vol.5 (1996), No. 2, pp.91-100.
Crossrefs
Programs
-
Maple
A000203 := proc(n) numtheory[sigma](n) ; end proc: isA152302 := proc(n) (A000203(n)+28) mod n = 0 ; end proc: for n from 1 to 1000000 do if isA152302(n) then printf("%d,",n) ; end if ; end do: # R. J. Mathar, Aug 25 2010
-
Mathematica
fQ[n_] := Divisible[ DivisorSigma[1, n] + 28, n]; lst = {}; k = 1; While[k < 10^9/4, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Sep 05 2010 *)
Extensions
Missing terms (1, 29, 182,..) inserted, 7 terms added, comment corrected - R. J. Mathar, Aug 25 2010
a(22)-a(30) from Robert G. Wilson v, Sep 05 2010
a(31)-a(34) from Donovan Johnson, Nov 03 2011
Comments