This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162313 #13 May 09 2025 07:11:45 %S A162313 1,3,1,17,6,1,147,51,9,1,1697,588,102,12,1,24483,8485,1470,170,15,1, %T A162313 423857,146898,25455,2940,255,18,1,8560947,2966999,514143,59395,5145, %U A162313 357,21,1,197613377,68487576,11867996,1371048,118790,8232,476,24,1 %N A162313 Triangular array P*(2*I - P^2)^-1, where P is Pascal's triangle A007318 and I is the identity matrix. %C A162313 Unsigned inverse of A162315. %C A162313 The row generating polynomials of this triangle may be used to evaluate the weighted sums of powers of odd numbers %C A162313 (1)... 1^m + 2*3^m + 4*5^m + ... + 2^n*(2*n+1)^m %C A162313 and also the sums %C A162313 (2)... 1^m + (1/2)*3^m + (1/4)*5^m + ... + (1/2)^n*(2*n+1)^m. %C A162313 See the Formula section below. %C A162313 We make a few remarks about the general array M(a) := a*P*(I-a*P^2)^-1, where a <> 1, and its connection with weighted sums of powers of odd numbers. The present case corresponds to a = 1/2. Compare with the remarks in A162312. %C A162313 The array M(a) begins %C A162313 / %C A162313 | a/(1-a) %C A162313 | (a^2+a)/(1-a)^2 ................. a/(1-a) %C A162313 | (a^3+6*a^2+a)/(1-a)^3 ........... 2*(a^2+a)/(1-a)^2 ... a/(1-a) %C A162313 (a^4+23*a^3+23*a^2+a)/(1-a)^4 ... %C A162313 | . %C A162313 \ . %C A162313 In the first column we recognize the numerator polynomials as the Eulerian polynomials of type B. See A060187. %C A162313 The e.g.f. for this array is %C A162313 (3)... a*exp((x+1)*t)/(1-a*exp(2*t)) = a/(1-a) +[(a^2+a)/(1-a)^2 + a/(1-a)*x]*t + [(a^3+6*a^2+a)/(1-a)^3 + 2*(a^2+a)*x/(1-a)^2 + a/(1-a)*x^2]*t^2/2! + .... %C A162313 The row polynomials P_m(x), which depend on a, satisfy the difference equation %C A162313 (4)... P_m(x) - a*P_m(x+2) = a*(x+1)^m. %C A162313 for m >= 1. %C A162313 The first few values are %C A162313 P_0(x) = a/(1-a), P_1(x) = a*x/(1-a) + (a^2+a)/(1-a)^2 and %C A162313 P_2(x) = a*x^2/(1-a) + 2*(a^2+a)*x/(1-a)^2 + (a^3+6*a^2+a)/(1-a)^3. %C A162313 Using (4) leads to the evaluations of the weighted sums of powers of even and odd positive integers: %C A162313 (5)... Sum_{k = 1..n} a^k*(2*k)^m = P_m(1) - a^n*P_m(2*n+1) %C A162313 and %C A162313 (6)... Sum_{k = 1..n} a^k*(2*k-1)^m = P_m(0) - a^n*P_m(2*n), %C A162313 with m = 0,1,2,... and a <> 1. %C A162313 In the remaining case a = 1 the sums are evaluated in terms of the Bernoulli polynomials. %F A162313 TABLE ENTRIES %F A162313 (1)... T(n,k) = binomial(n,k)*A080253(n-k). %F A162313 GENERATING FUNCTION %F A162313 (2)... exp((x+1)*t)/(2-exp(2*t)) = 1 + (3+x)*t + (17+6*x+x^2)*t^2/2! %F A162313 + .... %F A162313 The e.g.f. can also be written as %F A162313 (3)... exp(x*t)*G(t), where G(t) = exp(t)/(2-exp(2*t)) is the e.g.f. for A080253. %F A162313 ROW GENERATING POLYNOMIALS %F A162313 The row generating polynomials R_n(x) form an Appell sequence. The first few values are R_0(x) = 1, R_1(x) = 3 + x, R_2(x) = 17 + 6*x + x^2 and R_3(x) = 147 + 51*x + 9*x^2 + x^3. %F A162313 The row polynomials may be recursively computed by means of %F A162313 (4)... R_n(x) = (x+1)^n + Sum_{k=0..n-1} 2^(n-k)*binomial(n,k)*R_k(x). %F A162313 An explicit formula is %F A162313 (5)... R_n(x) = Sum_{j = 0..n} Sum_{k = 0..j} (-1)^(j-k)*binomial(j,k)*(x+2*k+1)^n. %F A162313 There is also a representation as an infinite series %F A162313 (6)... R_n(x) = (1/2)*Sum_{k >= 0} (1/2)^k*(x+2*k+1)^n. %F A162313 SUMS OF POWERS OF INTEGERS %F A162313 The row polynomials satisfy the difference equation %F A162313 (7)... 2*R_n(x) - R_n(x+2) = (x+1)^n, %F A162313 and hence may be used to evaluate the weighted sums of powers of odd integers %F A162313 (8)... Sum_{k=0..n-1} (1/2)^k*(2*k+1)^m = 2*R_m(0)-1/2^(n-1)*R_m(2*n) %F A162313 as well as %F A162313 (9)... Sum_{k=0..n-1} 2^k*(2*k+1)^m = (-1)^m*(2^n*R_m(-2*n)-R_m(0)). %F A162313 For example, m = 2 gives %F A162313 (10)... Sum_{k=0..n-1} (1/2)^k*(2*k+1)^2 = 34-2^(1-n)*(4*n^2+12*n+17) %F A162313 and %F A162313 (11)... Sum_{k = 0..n-1} 2^k*(2*k+1)^2 = 2^n*(4*n^2 - 12*n + 17)-17. %F A162313 RELATIONS WITH OTHER SEQUENCES %F A162313 (12)... Row sums = [1,4,24,208,2400,...] = 2^n*A000629(n) = A162314(n). %F A162313 (13)... Column 0 = [1,3,17,147,1697,...] = A080253. %F A162313 The identity %F A162313 (14)... R_n(2*x-1) = 2^n*P_n(x), %F A162313 where P_n(x) are the row generating polynomials of A154921, provides a surprising connection between (6) and the result %F A162313 (15)... Sum_{k = 0..n-1} (1/2)^k*k^m = 2*P_m(0) - (1/2)^(n-1)*P_m(n). %e A162313 Triangle begins %e A162313 n\k|.......0.......1......2......3......4......5......6 %e A162313 ======================================================= %e A162313 0..|.......1 %e A162313 1..|.......3.......1 %e A162313 2..|......17.......6......1 %e A162313 3..|.....147......51......9......1 %e A162313 4..|....1697.....588....102.....12......1 %e A162313 5..|...24483....8485...1470....170.....15......1 %e A162313 6..|..423857..146898..25455...2940....255.....18......1 %e A162313 ... %t A162313 m = 8; %t A162313 P = Table[Binomial[n, k], {n, 0, m}, {k, 0, m}]; %t A162313 T = P.Inverse[2 IdentityMatrix[m+1] - P.P]; %t A162313 Table[T[[n+1, k+1]], {n, 0, m}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 02 2019 *) %Y A162313 A000629, A007318, A060187, A080253 (column 0), A154921, A162312, A162314 (row sums), A162315 (unsigned inverse). %K A162313 easy,nonn,tabl %O A162313 0,2 %A A162313 _Peter Bala_, Jul 01 2009