This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162319 #25 Aug 31 2017 21:59:24 %S A162319 1,1,2,1,2,3,1,1,2,4,1,1,2,3,5,1,1,1,2,3,6,1,1,1,2,2,3,7,1,1,1,1,2,2, %T A162319 3,8,1,1,1,1,2,2,2,4,9,1,1,1,1,1,2,2,2,4,10,1,1,1,1,1,2,2,2,3,4,11,1, %U A162319 1,1,1,1,1,2,2,2,3,4,12,1,1,1,1,1,1,2,2 %N A162319 Array read by antidiagonals: a(n,m) = the number of digits of m is when written in base n. The top row is the number of digits for each m in base 1. %C A162319 A162320 is the array without the base 1 number lengths, and with the lengths of base 2 numbers in the top row. %H A162319 Michael De Vlieger, <a href="/A162319/b162319.txt">Table of n, a(n) for n = 1..10440</a> (covers bases 1..144) %e A162319 From _Michael De Vlieger_, Jan 02 2015: (Start) %e A162319 Array read by antidiagonals begins: %e A162319 1; %e A162319 1, 2; %e A162319 1, 2, 3; %e A162319 1, 1, 2, 4; %e A162319 1, 1, 2, 3, 5; %e A162319 1, 1, 1, 2, 3, 6; %e A162319 1, 1, 1, 2, 2, 3, 7; %e A162319 1, 1, 1, 1, 2, 2, 3, 8; %e A162319 1, 1, 1, 1, 2, 2, 2, 4, 9; %e A162319 1, 1, 1, 1, 1, 2, 2, 2, 4, 10; %e A162319 ... %e A162319 Array adjusted such that the rows represent base n and the columns m: %e A162319 m %e A162319 1 2 3 4 5 6 7 8 9 10 %e A162319 ------------------------------ %e A162319 base 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; %e A162319 base 2: 1, 2, 2, 3, 3, 3, 3, 4, 4, (4); %e A162319 base 3: 1, 1, 2, 2, 2, 2, 2, 2, (3, 3); %e A162319 base 4: 1, 1, 1, 2, 2, 2, 2, (2, 2, 2); %e A162319 base 5: 1, 1, 1, 1, 2, 2, (2, 2, 2, 2); %e A162319 base 6: 1, 1, 1, 1, 1, (2, 2, 2, 2, 2); %e A162319 base 7: 1, 1, 1, 1, (1, 1, 2, 2, 2, 2); %e A162319 base 8: 1, 1, 1, (1, 1, 1, 1, 2, 2, 2); %e A162319 base 9: 1, 1, (1, 1, 1, 1, 1, 1, 2, 2); %e A162319 base 10: 1, (1, 1, 1, 1, 1, 1, 1, 1, 1); %e A162319 ... %e A162319 For n = 12, a(12) is found in the second position in row 5 in the array read by antidiagonals. This equates to m = 2, base n = 4. The number m = 2 in base n = 4 requires 1 digit, thus a(12) = 1. %e A162319 For n = 14, a(14) is found in the fourth position in row 5 in the array read by antidiagonals. This equates to m = 4, base n = 2. The number m = 4 in base n = 2 requires 3 digits, thus a(14) = 3. (End) %t A162319 Table[Function[k, If[k == 1, m, IntegerLength[m, k]]][k - m + 1], {k, 13}, {m, k}] // Flatten (* _Michael De Vlieger_, Aug 31 2017 *) %Y A162319 Cf. A162320. %K A162319 base,nonn,tabl %O A162319 1,3 %A A162319 _Leroy Quet_, Jul 01 2009