This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162320 #25 Jun 10 2025 07:57:40 %S A162320 1,1,2,1,1,2,1,1,2,3,1,1,1,2,3,1,1,1,2,2,3,1,1,1,1,2,2,3,1,1,1,1,2,2, %T A162320 2,4,1,1,1,1,1,2,2,2,4,1,1,1,1,1,2,2,2,3,4,1,1,1,1,1,1,2,2,2,3,4,1,1, %U A162320 1,1,1,1,2,2,2,2,3,4,1,1,1,1,1,1,1,2,2 %N A162320 Array read by antidiagonals: a(n,m) = the number of digits of m when written in base n. The top row is the number of digits for each m in base 2. %C A162320 A162319 is the same array with the lengths of base 1 numbers in the top row. %H A162320 Michael De Vlieger, <a href="/A162320/b162320.txt">Table of n, a(n) for n = 1..10296</a> (Covers bases n = 1..144) %e A162320 From _Michael De Vlieger_, Jan 02 2015: (Start) %e A162320 Array read by antidiagonals begins: %e A162320 1; %e A162320 1, 2; %e A162320 1, 1, 2; %e A162320 1, 1, 2, 3; %e A162320 1, 1, 1, 2, 3; %e A162320 1, 1, 1, 2, 2, 3; %e A162320 1, 1, 1, 1, 2, 2, 3; %e A162320 1, 1, 1, 1, 2, 2, 2, 4; %e A162320 1, 1, 1, 1, 1, 2, 2, 2, 4; %e A162320 ... %e A162320 Array adjusted such that the rows represent base n and the columns m: %e A162320 m %e A162320 1 2 3 4 5 6 7 8 9 10 %e A162320 ------------------------------ %e A162320 base 2: 1, 2, 2, 3, 3, 3, 3, 4, 4, (4); %e A162320 base 3: 1, 1, 2, 2, 2, 2, 2, 2, (3, 3); %e A162320 base 4: 1, 1, 1, 2, 2, 2, 2, (2, 2, 2); %e A162320 base 5: 1, 1, 1, 1, 2, 2, (2, 2, 2, 2); %e A162320 base 6: 1, 1, 1, 1, 1, (2, 2, 2, 2, 2); %e A162320 base 7: 1, 1, 1, 1, (1, 1, 2, 2, 2, 2); %e A162320 base 8: 1, 1, 1, (1, 1, 1, 1, 2, 2, 2); %e A162320 base 9: 1, 1, (1, 1, 1, 1, 1, 1, 2, 2); %e A162320 base 10: 1, (1, 1, 1, 1, 1, 1, 1, 1, 1); %e A162320 ... %e A162320 For n = 12, a(12) is found in the second position in row 5 in the array read by antidiagonals. This equates to m = 2, base n = 5. The number m = 2 in base n = 5 requires 1 digit, thus a(12) = 1. %e A162320 For n = 20, a(20) is found in the fifth position in row 6 in the array read by antidiagonals. This equates to m = 5, base n = 3. The number m = 5 in base n = 3 requires 2 digits, thus a(20) = 2. (End) %t A162320 a162320[n_] := Block[{t = {}, i, j}, For[i = 1, i <= n, i++, For[j = i, j > 1, j--, AppendTo[t, Floor@Log[j, i - j + 1] + 1]]]; t]; a162320[14] (* _Michael De Vlieger_, Jan 02 2015 *) %Y A162320 Cf. A162319. %K A162320 base,nonn,tabl %O A162320 1,3 %A A162320 _Leroy Quet_, Jul 01 2009