This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162366 #23 Mar 18 2025 04:43:46 %S A162366 1,24,299,2576,17249,95656,457170,1934920,7396155,25914720,84197296, %T A162366 256013184,734002335,1996645640,5180091511,12874497504,30770197710, %U A162366 70952341040,158302199085,342599792520,720836052690,1477396844040,2954878145505,5776377855120,11052719207368 %N A162366 Number of reduced words of length n in the Weyl group D_24. %C A162366 First differs from A161931 at index n=24. - _Andrew Howroyd_, Mar 17 2025 %D A162366 N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche IV.) %D A162366 J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial. %H A162366 Andrew Howroyd, <a href="/A162366/b162366.txt">Table of n, a(n) for n = 0..552</a> %H A162366 <a href="/index/Gre#GROWTH">Index entries for growth series for groups</a> %F A162366 The growth series for D_k is the polynomial f(k)*Product_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by _N. J. A. Sloane_, Aug 07 2021]. This is a row of the triangle in A162206. %p A162366 # Growth series for D_k, truncated to terms of order M. - _N. J. A. Sloane_, Aug 07 2021 %p A162366 f := proc(m::integer) (1-x^m)/(1-x) ; end proc: %p A162366 g := proc(k,M) local a,i; global f; %p A162366 a:=f(k)*mul(f(2*i),i=1..k-1); %p A162366 seriestolist(series(a,x,M+1)); %p A162366 end proc; %t A162366 f[m_] := (1-x^m)/(1-x); %t A162366 With[{k = 24}, CoefficientList[f[k]*Product[f[2i], {i, 1, k-1}] + O[x]^(k-2), x]] (* _Jean-François Alcover_, Feb 15 2023, after Maple code *) %Y A162366 Row 24 of A162206. %Y A162366 Growth series for groups D_n, n = 3,...,50: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379, A162380, A162381, A162384, A162388, A162389, A162392, A162399, A162402, A162403, A162411, A162412, A162413, A162418, A162452, A162456, A162461, A162469, A162492. %K A162366 nonn,fini,full %O A162366 0,2 %A A162366 _John Cannon_ and _N. J. A. Sloane_, Dec 01 2009