This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162395 #58 Jun 05 2025 13:55:25 %S A162395 1,-4,9,-16,25,-36,49,-64,81,-100,121,-144,169,-196,225,-256,289,-324, %T A162395 361,-400,441,-484,529,-576,625,-676,729,-784,841,-900,961,-1024,1089, %U A162395 -1156,1225,-1296,1369,-1444,1521,-1600,1681,-1764,1849,-1936,2025,-2116,2209,-2304,2401,-2500 %N A162395 a(n) = -(-1)^n * n^2. %C A162395 This sequence is the denominator of (Pi^2)/12 = 1/1-1/4+1/9-1/16+1/25-1/36+... - _Mohammad K. Azarian_, Dec 29 2011 %C A162395 Also, circulant determinant of [1,2,...,n,n-1,...,1], i.e., determinant of the (2n-1) X (2n-1) matrix which has this as first row (and also first column), where row k+1 is obtained by cyclically shifting row k one place to the left. - _M. F. Hasler_, Dec 17 2016 %H A162395 Vincenzo Librandi, <a href="/A162395/b162395.txt">Table of n, a(n) for n = 1..1000</a> %H A162395 Michael Somos, <a href="http://grail.eecs.csuohio.edu/~somos/rfmc.html">Rational Function Multiplicative Coefficients</a>. %H A162395 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (-3,-3,-1). %F A162395 Euler transform of length 2 sequence [-4, 3]. %F A162395 a(n) is multiplicative with a(2^e) = -(4^e) if e>0, a(p^e) = (p^2)^e if p>2. %F A162395 G.f.: x * (1 - x) / (1 + x)^3. %F A162395 E.g.f.: exp(-x) * (x - x^2). %F A162395 a(n) = a(-n) = -(-1)^n * A000290(n) for all n in Z. %F A162395 Sum_{n>=1} 1/a(n) = Pi^2/12 (A072691). - _Amiram Eldar_, Dec 10 2022 %F A162395 Dirichlet g.f.: zeta(s-2)*(1-2^(3-s)) = DirichletEta(s-2). - _Amiram Eldar_, Jan 07 2023 %e A162395 G.f. = x - 4*x^2 + 9*x^3 - 16*x^4 + 25*x^5 - 36*x^6 + 49*x^7 - 64*x^8 + 81*x^9 + ... %t A162395 Table[(-1)^(n+1) * n^2, {n, 60}] (* _Vincenzo Librandi_, Feb 15 2013 *) %o A162395 (PARI) {a(n) = -(-1)^n * n^2}; %o A162395 (Magma) [(-1)^(n+1) * n^2: n in [1..60]]; // _Vincenzo Librandi_, Feb 15 2013 %Y A162395 Cf. A000290, A072691. %Y A162395 For the reversion of this sequence see A263843 (and also A007297). %K A162395 sign,mult,easy %O A162395 1,2 %A A162395 _Michael Somos_, Jul 02 2009