This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162419 #21 Jan 06 2023 20:46:01 %S A162419 1,3,16,35,36,48,64,195,169,108,144,560,196,192,576,899,324,507,400, %T A162419 1260,1024,432,576,3120,961,588,1600,2240,900,1728,1024,3843,2304,972, %U A162419 2304,5915,1444,1200,3136,7020,1764,3072,1936,5040,6084,1728,2304,14384 %N A162419 a(n) = sigma(n)*|A002129(n)| where sigma(n) = A000203(n). %C A162419 A002129 forms the l.g.f. of log(Sum_{n>=0} x^(n(n+1)/2)), while A000203 forms the l.g.f. of log(1/eta(x)) where eta(x)^3 = Sum_{n>=0} (-1)^n*(2n+1)*x^(n*(n+1)/2). %H A162419 Amiram Eldar, <a href="/A162419/b162419.txt">Table of n, a(n) for n = 1..10000</a> %F A162419 a(2n-1) = sigma(2n-1)^2. %F A162419 L.g.f.: L(x) = log(G(x)) where G(x) is the g.f. of A162420. %F A162419 From _Amiram Eldar_, Dec 01 2022: (Start) %F A162419 Multiplicative with a(2^e) = (2^(e+1)-1)*(2^(e+1)-3), and a(p^e) = ((p^(e+1)-1)/(p - 1))^2 for p > 2. %F A162419 Sum_{k=1..n} a(k) ~ c * n^3, where c = 29*zeta(3)/48 = 0.726242... . (End) %F A162419 Dirichlet g.f.: (zeta(s)*zeta(s-1)^2*zeta(s-2)/zeta(2*s-2))*(7*2^(2-s)-4^(2-s)+2^s-4)/(2^s+2). - _Amiram Eldar_, Jan 06 2023 %e A162419 L.g.f.: L(x) = x + 3*x^2/2 + 16*x^3/3 + 35*x^4/4 + 36*x^5/5 + 48*x^6/6 + ... where exp(L(x)) is the g.f. of A162420: %e A162419 exp(L(x)) = 1 + x + 2*x^2 + 7*x^3 + 16*x^4 + 28*x^5 + 57*x^6 + ... %e A162419 ... %e A162419 Equals the term-wise product of the (unsigned) sequences: %e A162419 A000203:[1, 3,4, 7,6,12,8, 15,13,18,12, 28,14,24,24, 31,18,...]; %e A162419 A002129:[1,-1,4,-5,6,-4,8,-13,13,-6,12,-20,14,-8,24,-29,18,...]. %t A162419 f[p_, e_] := If[p == 2, (2^(e + 1) - 1) * (2^(e + 1) - 3), ((p^(e + 1) - 1)/(p - 1))^2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 48] (* _Amiram Eldar_, Jul 20 2019 *) %o A162419 (PARI) a(n)=sigma(n)*sumdiv(n, d, (-1)^(n-d)*d) %Y A162419 Cf. A162420, A000203, A002129, A002117. %K A162419 nonn,mult %O A162419 1,2 %A A162419 _Paul D. Hanna_, Jul 03 2009