cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162439 Write down the binary representation of n. Partition the string which is this binary representation by placing a '+' just left of every 1. Add the resulting base 2 numbers. a(n) = decimal equivalent of this sum.

This page as a plain text file.
%I A162439 #31 Jan 07 2016 14:39:29
%S A162439 1,2,2,4,3,3,3,8,5,4,4,5,4,4,4,16,9,6,6,6,5,5,5,9,6,5,5,6,5,5,5,32,17,
%T A162439 10,10,8,7,7,7,10,7,6,6,7,6,6,6,17,10,7,7,7,6,6,6,10,7,6,6,7,6,6,6,64,
%U A162439 33,18,18,12,11,11,11,12,9,8,8,9,8,8,8,18,11,8,8,8,7,7,7,11,8,7,7,8,7,7
%N A162439 Write down the binary representation of n. Partition the string which is this binary representation by placing a '+' just left of every 1. Add the resulting base 2 numbers. a(n) = decimal equivalent of this sum.
%C A162439 From _Vladimir Shevelev_, Dec 11 2014: (Start)
%C A162439 Or, sum of parts of the form 10...0 with nonnegative number of zeros in binary representation of n as the corresponding powers of 2. For example, n=50 in binary is a concatenation of parts (1)(100)(10). Then a(50)=1+4+2=7.
%C A162439 Every positive number k occurs a finite number of times, such that the position of the last appearance of k is 2^k-1.
%C A162439   Moreover, the number of times of appearances of k is the number of compositions of k into powers of 2, i.e., it is A023359(k), k>0. (End)
%H A162439 Alois P. Heinz, <a href="/A162439/b162439.txt">Table of n, a(n) for n = 1..10000</a>
%F A162439 Let, for k_1>k_2>...>k_r, n = 2^k_1 + 2^k_2 +...+ 2^k_r. Then a(n) = 2^(k_1-k_2-1) + 2^(k_2-k_3-1) + 2^(k_(r-1)-k_r-1) + 2^k_r. - _Vladimir Shevelev_, Dec 11 2013
%e A162439 52 in binary is 110100. Placing the +'s before every 1, we get +1+10+100, which is 1+2+4 = 7 in decimal. So a(52) = 7.
%p A162439 a:= proc(n) local l, s, i, j; l:= convert(n, base, 2); s:= 0; i:=1; for j from nops(l)-1 to 1 by -1 do if l[j]=0 then i:= i*2; else s:= s+i; i:= 1 fi od; s+i end: seq(a(n), n=1..150); # _Alois P. Heinz_, Jul 28 2009
%p A162439 Lton := proc(L) local i ; add(op(i,L)*2^(i-1),i=1..nops(L)) ; end: A162439 := proc(n) local a,lef,b2,ri ; a := 0 ; lef := 0; b2 := convert(n,base,2) ; for ri from lef+1 do if op(ri,b2) = 1 then a := a+Lton([op(lef+1..ri,b2)]) ; lef := ri ; fi; if ri =nops(b2) then break; fi; od: a ; end: seq(A162439(n),n=1..100) ; # _R. J. Mathar_, Jul 30 2009
%t A162439 a[n_] := FromDigits[#, 2]& /@ Split[IntegerDigits[n, 2] , #2==0&] // Total; Array[a, 100] (* _Jean-François Alcover_, Jan 07 2016 *)
%Y A162439 Cf. A124771, A233249, A233312, A233416, A233420, A233564, A233569, A233655.
%K A162439 base,nonn,look
%O A162439 1,2
%A A162439 _Leroy Quet_, Jul 03 2009
%E A162439 More terms from _Alois P. Heinz_ and _R. J. Mathar_, Jul 28 2009