cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162440 The pg(n) sequence that is associated with the Eta triangle A160464.

This page as a plain text file.
%I A162440 #20 May 08 2018 15:11:56
%S A162440 2,16,144,4608,115200,4147200,203212800,26011238400,2106910310400,
%T A162440 210691031040000,25493614755840000,3671080524840960000,
%U A162440 620412608698122240000,121600871304831959040000
%N A162440 The pg(n) sequence that is associated with the Eta triangle A160464.
%C A162440 The EG1 matrix coefficients are defined by EG1[2m-1,1] = 2*eta(2m-1) and the recurrence relation EG1[2m-1,n] = EG1[2m-1,n-1] - EG1[2m-3,n-1]/(n-1)^2 with m = .., -2, -1, 0, 1, 2, ... and n = 1, 2, 3, ... . As usual, eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. For the EG2 matrix, the even counterpart of the EG1 matrix, see A008955.
%C A162440 The coefficients in the columns of the EG1 matrix, for m >= 1 and n >= 2, can be generated with GFE(z;n) = ((-1)^(n-1)*r(n)*CFN1(z,n)*GFE(z;n=1) + ETA(z,n))/pg(n) for n >= 2.
%C A162440 The CFN1(z,n) polynomials depend on the central factorial numbers A008955 and the ETA(z,n) are the Eta polynomials which led to the Eta triangle, see for both A160464.
%C A162440 The pg(n) sequence can be generated with the first Maple program and the EG1[2m-1,n] matrix coefficients can be generated with the second Maple program.
%C A162440 The EG1 matrix is related to the ES1 matrix, see A160464 and the formulas below.
%D A162440 Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116.  Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
%H A162440 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
%F A162440 pg(n) = (n-1)!^2*2^floor(log(n-1)/log(2)+1) for n >= 2.
%F A162440 r(n) = 2^e(n) = 2^floor(log(n-1)/log(2)+1) for n >= 2.
%F A162440 EG1[ -1,n] = 2^(1-2*n)*(2*n-1)!/((n-1)!^2) for n >= 1.
%F A162440 GFE(z;n) = sum (EG1[2*m-1,n]*z^(2*m-2), m=1..infinity).
%F A162440 GFE(z;n) = (1-z^2/(n-1)^2)*GFE(z;n-1)-EG1[ -1,n-1]/(n-1)^2 for n = >2. with GFE(z;n=1) = 2*log(2)-Psi(z)-Psi(-z)+Psi(z/2)+Psi(-z/2) and Psi(z) is the digamma function.
%F A162440 EG1[2m-1,n] = (2*2^(1-2*n)*(2*n-1)!/((n-1)!^2)) * ES1[2m-1,n].
%e A162440 The first few generating functions GFE(z;n) are:
%e A162440 GFE(z;n=2) = ((-1)*2*(z^2 - 1)*GFE(z;n=1) + (-1))/2,
%e A162440 GFE(z;n=3) = ((+1)*4*(z^4 - 5*z^2 + 4)*GFE(z;n=1) + (-11 + 2*z^2))/16,
%e A162440 GFE(z;n=4) = ((-1)*4*(z^6-14*z^4+49*z^2-36)*GFE(z;n=1) + (-114+29*z^2-2*z^4))/144.
%p A162440 nmax := 16; seq((n-1)!^2*2^floor(ln(n-1)/ln(2)+1), n=2..nmax);
%p A162440 # End program 1
%p A162440 nmax1 := 5; coln := 4; mmax1 := nmax1: for n from 0 to nmax1 do t1(n, 0) := 1 end do: for n from 0 to nmax1 do t1(n, n) := (n!)^2 end do: for n from 1 to nmax1 do for m from 1 to n-1 do t1(n, m) := t1(n-1, m-1)*n^2 + t1(n-1, m) end do: end do: for m from 1 to mmax1 do EG1[1-2*m, 1] := evalf((2^(2*m)-1)* bernoulli(2*m)/(m)) od: EG1[1, 1] := evalf(2*ln(2)): for m from 2 to mmax1 do EG1[2*m-1, 1] := evalf(2*(1-2^(1-(2*m-1))) * Zeta(2*m-1)) od: for m from -mmax1+coln to mmax1 do EG1[2*m-1, coln]:= (-1)^(coln+1)*sum((-1)^k*t1(coln-1, k) * EG1[1-2*coln+2*m+2*k, 1], k=0..coln-1)/(coln-1)!^2 od;
%p A162440 # End program 2 (Edited by _Johannes W. Meijer_, Sep 21 2012)
%Y A162440 The ETA(z, n) polynomials and the ES1 matrix lead to the Eta triangle A160464.
%Y A162440 The CFN1(z, n), the t1(n, m) and the EG2 matrix lead to A008955.
%Y A162440 The EG1[ -1, n] equal (1/2)*A001803(n-1)/A046161(n-1).
%Y A162440 The r(n) sequence equals A062383(n) (n>=1).
%Y A162440 The e(n) sequence equals A029837(n) (n>=1).
%Y A162440 Cf. A160473 (p(n) sequence).
%Y A162440 Cf. A162443 (BG1 matrix), A162446 (ZG1 matrix) and A162448 (LG1 matrix).
%K A162440 easy,nonn
%O A162440 2,1
%A A162440 _Johannes W. Meijer_, Jul 06 2009