cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162476 Expansion of (1/(1-x))*c(x/(1-x)^4), c(x) the g.f. of A000108.

This page as a plain text file.
%I A162476 #10 Jan 08 2023 11:22:10
%S A162476 1,2,8,39,205,1136,6548,38882,236260,1462131,9184413,58408588,
%T A162476 375330536,2433325315,15896742423,104546968252,691608993478,
%U A162476 4599024778431,30724413312953,206114347293697,1387917616331135,9377747277136328
%N A162476 Expansion of (1/(1-x))*c(x/(1-x)^4), c(x) the g.f. of A000108.
%C A162476 Partial sums are A162477. Partial sums of A162475.
%F A162476 G.f.: 1/(1-x-x/((1-x)^3-x/(1-x-x/((1-x)^3-x/(1-x-x/((1-x)^3-x/(1-... (continued fraction);
%F A162476 a(n) = Sum_{k=0..n} C(n+3k,n-k)*A000108(k).
%F A162476 (n+1)*(2*n-3)*a(n) -(4*n-3)*(4*n-5)*a(n-1) +3*(4*n^2-14*n+11)*a(n-2) +(-8*n^2+40*n-27)*a(n-3) +(2*n-1)*(n-6)*a(n-4) = 0. - _R. J. Mathar_, Nov 15 2011
%K A162476 easy,nonn
%O A162476 0,2
%A A162476 _Paul Barry_, Jul 04 2009