This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162514 #27 Nov 06 2018 06:45:48 %S A162514 2,1,0,1,0,2,1,0,3,0,1,0,4,0,2,1,0,5,0,5,0,1,0,6,0,9,0,2,1,0,7,0,14,0, %T A162514 7,0,1,0,8,0,20,0,16,0,2,1,0,9,0,27,0,30,0,9,0,1,0,10,0,35,0,50,0,25, %U A162514 0,2,1,0,11,0,44,0,77,0,55,0,11,0,1,0,12,0,54,0,112,0,105,0,36,0,2,1,0,13,0 %N A162514 Triangle of coefficients of polynomials defined by the Binet form P(n,x) = U^n + L^n, where U = (x + d)/2, L = (x - d)/2, d = (4 + x^2)^(1/2). Decreasing powers of x. %C A162514 For a signed version of this triangle corresponding to the row reversed version of the triangle A127672 see A244422. - _Wolfdieter Lang_, Aug 07 2014 %C A162514 The row reversed triangle is A114525. - _Paolo Bonzini_, Jun 23 2016 %H A162514 G. C. Greubel, <a href="/A162514/b162514.txt">Rows n=0..100 of triangle, flattened</a> %F A162514 P(n,x) = x*P(n-1,x) + P(n-2,x) for n >= 2, P(0,x) = 2, P(1,x) = x. %F A162514 From _Wolfdieter Lang_, Aug 07 2014: (Start) %F A162514 T(n,m) = [x^(n-m)] P(n,x), m = 0, 1, ..., n and n >= 0. %F A162514 G.f. of polynomials P(n,x): (2 - x*z)/(1 - x*z - z^2). %F A162514 G.f. of row polynomials R(n,x) = Sum_{m=0..n} T(n,m)*x^m: (2 - z)/(1 - z - (x*z)^2) (rows for P(n,x) reversed). %F A162514 (End) %F A162514 For n > 0, T(n,2*m+1) = 0, T(n,2*m) = A034807(n,m). - _Paolo Bonzini_, Jun 23 2016 %e A162514 Triangle begins %e A162514 2; == 2 %e A162514 1, 0; == x + 0 %e A162514 1, 0, 2; == x^2 + 2 %e A162514 1, 0, 3, 0; == x^3 + 3*x + 0 %e A162514 1, 0, 4, 0, 2; %e A162514 1, 0, 5, 0, 5, 0; %e A162514 1, 0, 6, 0, 9, 0, 2; %e A162514 1, 0, 7, 0, 14, 0, 7, 0; %e A162514 1, 0, 8, 0, 20, 0, 16, 0, 2; %e A162514 1, 0, 9, 0, 27, 0, 30, 0, 9, 0; %e A162514 1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2; %e A162514 ... %e A162514 From _Wolfdieter Lang_, Aug 07 2014: (Start) %e A162514 The row polynomials R(n, x) are: %e A162514 R(0, x) = 2, R(1, x) = 1 = x*P(1,1/x), R(2, x) = 1 + 2*x^2 = x^2*P(2,1/x), R(3, x) = 1 + 3*x^2 = x^3*P(3,1/x), ... %e A162514 (End) %t A162514 Table[Reverse[CoefficientList[LucasL[n, x], x]], {n, 0, 12}]//Flatten (* _G. C. Greubel_, Nov 05 2018 *) %o A162514 (PARI) %o A162514 P(n)= %o A162514 { %o A162514 local(U, L, d, r, x); %o A162514 if ( n<0, return(0) ); %o A162514 x = 'x+O('x^(n+1)); %o A162514 d=(4 + x^2)^(1/2); %o A162514 U=(x+d)/2; L=(x-d)/2; %o A162514 r = U^n+L^n; %o A162514 r = truncate(r); %o A162514 return( r ); %o A162514 } %o A162514 for (n=0, 10, print(Vec(P(n))) ); /* show triangle */ %o A162514 /* _Joerg Arndt_, Jul 24 2011 */ %Y A162514 Cf. A000032, A114525, A162515, A162516, A162517. %K A162514 nonn,tabl %O A162514 0,1 %A A162514 _Clark Kimberling_, Jul 05 2009 %E A162514 Name clarified by _Wolfdieter Lang_, Aug 07 2014