This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162516 #12 Jul 10 2023 01:39:32 %S A162516 1,1,0,1,1,4,1,3,12,0,1,6,25,8,16,1,10,45,40,80,0,1,15,75,121,252,48, %T A162516 64,1,21,119,287,644,336,448,0,1,28,182,588,1457,1360,1888,256,256,1, %U A162516 36,270,1092,3033,4176,6240,2304,2304,0,1,45,390,1890,5925,10801,17780,11680,12160,1280,1024 %N A162516 Triangle of coefficients of polynomials defined by Binet form: P(n,x) = ((x+d)^n + (x-d)^n)/2, where d=sqrt(x+4). %H A162516 G. C. Greubel, <a href="/A162516/b162516.txt">Rows n = 0..100 of triangle, flattened</a> %F A162516 P(n,x) = 2*x*P(n-1,x) - (x^2 -x -4)*P(n-2,x). %F A162516 From _G. C. Greubel_, Jul 09 2023: (Start) %F A162516 T(n, k) = [x^(n-k)] ( ((x+sqrt(x+4))^n + (x-sqrt(x+4))^n)/2 ). %F A162516 T(n, 1) = A000217(n-1), n >= 1. %F A162516 T(n, n) = A199572(n). %F A162516 Sum_{k=0..n} T(n, k) = A084057(n). %F A162516 Sum_{k=0..n} 2^k*T(n, k) = A125818(n). %F A162516 Sum_{k=0..n} (-1)^k*T(n, k) = A026150(n). %F A162516 Sum_{k=0..n} (-2)^k*T(n, k) = A133343(n). (End) %e A162516 First six rows: %e A162516 1; %e A162516 1, 0; %e A162516 1, 1, 4; %e A162516 1, 3, 12, 0; %e A162516 1, 6, 25, 8, 16; %e A162516 1, 10, 48, 40, 80, 0; %t A162516 P[n_, x_]:= P[n, x]= ((x+Sqrt[x+4])^n + (x-Sqrt[x+4])^n)/2; %t A162516 T[n_, k_]:= Coefficient[Series[P[n, x], {x,0,n-k+1}], x, n-k]; %t A162516 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 08 2020; Jul 09 2023 *) %o A162516 (Magma) %o A162516 m:=12; %o A162516 p:= func< n,x | ((x+Sqrt(x+4))^n + (x-Sqrt(x+4))^n)/2 >; %o A162516 R<x>:=PowerSeriesRing(Rationals(), m+1); %o A162516 T:= func< n,k | Coefficient(R!( p(n,x) ), n-k) >; %o A162516 [T(n,k): k in [0..n], n in [0..m]]; // _G. C. Greubel_, Jul 09 2023 %o A162516 (SageMath) %o A162516 def p(n,x): return ((x+sqrt(x+4))^n + (x-sqrt(x+4))^n)/2 %o A162516 def T(n,k): %o A162516 P.<x> = PowerSeriesRing(QQ) %o A162516 return P( p(n,x) ).list()[n-k] %o A162516 flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Jul 09 2023 %Y A162516 Cf. A162514, A162515, A162517. %Y A162516 Cf. A000217, A026150, A084057, A125818, A199572. %Y A162516 For fixed k, the sequences P(n,k), for n=1,2,3,4,5, are A084057, A084059, A146963, A081342, A081343, respectively. %K A162516 nonn,tabl %O A162516 0,6 %A A162516 _Clark Kimberling_, Jul 05 2009