cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162541 Primes p such that a splitting of the cyclic group Zp by the perfect 3-shift code {+-1,+-2,+-3} exists.

Original entry on oeis.org

7, 37, 139, 163, 181, 241, 313, 337, 349, 379, 409, 421, 541, 571, 607, 631, 751, 859, 877, 937, 1033, 1087, 1123, 1171, 1291, 1297, 1447, 1453, 1483, 1693, 1741, 1747, 2011, 2161, 2239, 2311, 2371, 2473, 2539, 2647, 2677, 2707, 2719, 2857, 3169, 3361, 3433, 3511, 3547
Offset: 1

Views

Author

Ctibor O. Zizka, Jul 05 2009

Keywords

Comments

This list was computed by S. Saidi.
From Travis Scott, Oct 04 2022: (Start)
These are also the p whose (phi/3)-th power residues have minimal bases at {1,2,3} (see under Example). Such covers {1
a(n)-> {1,2,3}(n) = 7, 37, 139, 163, 181, 241, ... ~ (9*n)*log(n)
{1,2,4}(n) = 13, 19, 61, 67, 73, 79, ... ~ (9*n/2)*log(n)
{1,3,5}(n) = 31, 223, 229, 277, 283, 397, ... ~ (27*n)*log(n)
{1,3,7}(n) = 43, 433, 457, 691, 1069, 1471, ... ~ (81*n/2)*log(n)
{1,3,9}(n) = 109, 127, 157, 601, 733, 739, ... ~ (81*n/4)*log(n)
{1,5,7}(n) = 307, 919, 1093, 2179, 2251, 3181, ... ~ (81*n)*log(n)
Note that the k-th q value takes A054272(k) x values and that a(n) = A040034(n) \ {1,2,4}(n). Following a result of Erdős (cf. A053760, A098990) the asymptotic means for q and x are Sum_{n>=1} prime(n)*2/3^n = 2.69463670741804726229622... and Sum_{n>=1} Sum_{prime(n) < k prime < prime(n)^2 OR k = prime(n)^2} D(prime(n),k)*k = 5.69767191389790422108748...
Subsequence of A040034 (2 is not a cubic residue modulo p) such that 3 is neither a residue nor in the same cubic power class as 2. (End)

Examples

			From _Travis Scott_, Oct 04 2022: (Start)
{1,2,3}^12 (mod 37) == {1,26,10} covers the 12th-power residues on Z/37Z.
{1,2,3}^14 (mod 43) == {1,1,36} misses 6. (End)
		

Crossrefs

Subsequence of A040034.

Programs

  • Mathematica
    Select[Prime@Range@497,Mod[#,3]==1&&DuplicateFreeQ@PowerMod[{1,2,3},(#-1)/3,#]&] (* Travis Scott, Oct 04 2022 *)

Formula

From Travis Scott, Oct 04 2022: (Start)
Primes of quadratic form 7x^2 +- 6xy + 36y^2 [from Saidi].
a(n) ~ 9*n*log(n). (End)

Extensions

Incorrect term deleted and more terms from Travis Scott, Oct 04 2022