This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162559 #13 Sep 08 2022 08:45:46 %S A162559 4,7,22,58,160,436,1192,3256,8896,24304,66400,181408,495616,1354048, %T A162559 3699328,10106752,27612160,75437824,206099968,563075584,1538351104, %U A162559 4202853376,11482408960,31370524672,85705867264,234152783872,639717302272,1747740172288,4774914949120 %N A162559 a(n) = ((4+sqrt(3))*(1+sqrt(3))^n + (4-sqrt(3))*(1-sqrt(3))^n)/2. %C A162559 Binomial transform of A162766. Inverse binomial transform of A077236. %H A162559 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,2). %F A162559 a(n) = 2*a(n-1) + 2*a(n-2) for n > 1; a(0) = 4, a(1) = 7. %F A162559 G.f.: (4-x)/(1-2*x-2*x^2). %p A162559 seq((1/2)*simplify((4+sqrt(3))*(1+sqrt(3))^n+(4-sqrt(3))*(1-sqrt(3))^n), n = 0 .. 27); # _Emeric Deutsch_, Jul 16 2009 %t A162559 LinearRecurrence[{2,2},{4,7},30] (* _Harvey P. Dale_, Sep 21 2018 *) %o A162559 (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-3); S:=[ ((4+r)*(1+r)^n+(4-r)*(1-r)^n)/2: n in [0..25] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Jul 13 2009 %Y A162559 Cf. A162766, A077236. %K A162559 nonn %O A162559 0,1 %A A162559 Al Hakanson (hawkuu(AT)gmail.com), Jul 06 2009 %E A162559 Edited by _Klaus Brockhaus_, _Paolo P. Lava_ and Emeric Deutsch, Jul 13 2009 %E A162559 Two different extensions were received. This version was rechecked by _N. J. A. Sloane_, Jul 19 2009