This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162589 #7 Jul 04 2018 22:18:59 %S A162589 1,2,6,12,38,76,188,376,1094,2188,5236,10472,26076,52152,118840, %T A162589 237680,612678,1225356,2804420,5608840,13279604,26559208,59074504, %U A162589 118149008,277925148,555850296,1228260104,2456520208,5552652792,11105305584 %N A162589 G.f.: A(x) = exp( Sum_{n>=1} 2^n*A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n. %H A162589 G. C. Greubel, <a href="/A162589/b162589.txt">Table of n, a(n) for n = 0..1000</a> %e A162589 G.f.: A(x) = 1 + 2*x + 6*x^2 + 12*x^3 + 38*x^4 + 76*x^5 + 188*x^6 + ... %e A162589 log(A(x)) = 2*x + 8*x^2/2 + 8*x^3/3 + 64*x^4/4 + 32*x^5/5 + 128*x^6/6 + 128*x^7/7 + ... %t A162589 nmax = 150; a[n_]:= SeriesCoefficient[Series[Exp[Sum[2^(k + IntegerExponent[k, 2])*q^k/k, {k, 1, nmax}]], {q,0,nmax}], n]; Table[a[n], {n,0,50}] (* _G. C. Greubel_, Jul 04 2018 *) %o A162589 (PARI) {a(n)=local(L=sum(m=1,n,2^(m+valuation(m,2))*x^m/m)+x*O(x^n));polcoeff(exp(L),n)} %Y A162589 Cf. A162588, A006519, A000123. %K A162589 nonn %O A162589 0,2 %A A162589 _Paul D. Hanna_, Jul 07 2009