cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162617 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) / (1-x)^10.

This page as a plain text file.
%I A162617 #14 Sep 08 2022 08:45:46
%S A162617 1,10,55,219,705,1947,4784,10715,22253,43395,80223,141648,240305,
%T A162617 393602,624920,964955,1453187,2139455,3085611,4367220,6075267,8317827,
%U A162617 11221650,14933610,19621965,25477374,32713617,41567965,52301149,65196880
%N A162617 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) / (1-x)^10.
%C A162617 This is a row of the triangle in A162499.
%C A162617 Only finitely many terms are nonzero.
%H A162617 Vincenzo Librandi, <a href="/A162617/b162617.txt">Table of n, a(n) for n = 0..155</a> (complete sequence)
%t A162617 CoefficientList[ Series[Times @@ (1 - x^(3 Range@10))/(1 - x)^10, {x, 0, 70}], x] (* _Vincenzo Librandi_, Mar 14 2013 and slightly modified by _Robert G. Wilson v_, Jul 23 2018 *)
%o A162617 (PARI) x='x+O('x^155); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)/(1-x)^10) /* complete row */ \\ _G. C. Greubel_, Jul 06 2018
%o A162617 (Magma) m:=155; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)/(1-x)^10)); /* complete row */ // _G. C. Greubel_, Jul 06 2018
%K A162617 nonn,fini,full
%O A162617 0,2
%A A162617 _N. J. A. Sloane_, Dec 02 2009