cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162629 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) * (1-x^33) * (1-x^36) / (1-x)^12.

This page as a plain text file.
%I A162629 #9 Sep 08 2022 08:45:46
%S A162629 1,12,78,363,1353,4290,12011,30447,71136,155220,319527,625482,1171742,
%T A162629 2111604,3676386,6206123,10189047,16311426,25519416,39094626,58745103,
%U A162629 86713407,125903361,180026925,253772454,352995357,484931877,658436362
%N A162629 G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) * (1-x^21) * (1-x^24) * (1-x^27) * (1-x^30) * (1-x^33) * (1-x^36) / (1-x)^12.
%C A162629 This is a row of the triangle in A162499. Only finitely many terms are nonzero.
%H A162629 G. C. Greubel, <a href="/A162629/b162629.txt">Table of n, a(n) for n = 0..222</a>
%t A162629 CoefficientList[ Series[Times @@ (1 - x^(3 Range@12))/(1 - x)^12, {x, 0, 70}], x] (* _G. C. Greubel_, Jul 06 2018 and slightly modified by _Robert G. Wilson v_, Jul 23 2018 *)
%o A162629 (PARI) x='x+O('x^50); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)*(1-x^36)/(1-x)^12) \\ _G. C. Greubel_, Jul 06 2018
%o A162629 (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)*(1-x^21)*(1-x^24)*(1-x^27)*(1-x^30)*(1-x^33)*(1-x^36)/(1-x)^12)); // _G. C. Greubel_, Jul 06 2018
%K A162629 nonn
%O A162629 0,2
%A A162629 _N. J. A. Sloane_, Dec 02 2009