This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162630 #24 Nov 18 2018 09:05:34 %S A162630 2,4,2,6,2,4,8,4,2,6,10,6,2,4,8,12,8,4,2,6,10,14,10,6,2,4,8,12,16,12, %T A162630 8,4,2,6,10,14,18,14,10,6,2,4,8,12,16,20,16,12,8,4,2,6,10,14,18,22,18, %U A162630 14,10,6,2,4,8,12,16,20,24,20,16,12,8,4,2 %N A162630 Triangle read by rows in which row n lists the number of states of the subshells of the n-th shell of the nuclear shell model ordered by energy level in increasing order. %C A162630 The list of the spin-orbit coupling of this version of the nuclear shell model starts: 1s_(1/2), 1p_(3/2), 1p_(1/2), 1d_(5/2), 2s_(1/2), 1d_(3/2), 1f_(7/2), 2p_(3/2), 2p_(1/2), etc. The numerators of the fractions are 1, 3, 1, 5, 1, 3, 7, 3, 1, ... then we add 1 to every numerator, so we have this sequence: 2, 4, 2, 6, 2, 4, 8, 4, 2, ... Other sequences that arise from this sequence are A A130517, A210983, A210984. - _Omar E. Pol_, Sep 02 2012 %H A162630 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a>, 2012, arXiv:1212.2732 [math.CO], 2012. %F A162630 a(n) = 2*A130517(n). %F A162630 From _Boris Putievskiy_, Jan 16 2013: (Start) %F A162630 a(n) = 2*(|2*A000027(n) - A003056(n)^2 - 2*A003056(n) - 3| + floor((2*A000027(n) - A003056(n)^2 - A003056(n))/(A003056(n) + 3))). %F A162630 a(n) = 2*(|2*n - t*t - 2*t - 3| + floor((2*n - t*t - t)/(t+3))) where t = floor((-1 + sqrt(8*n-7))/2). (End) %e A162630 A geometric shell model of the atomic nucleus: %e A162630 +---------------------- i ----------------------+ %e A162630 | +------------------ h ------------------+ | %e A162630 | | +-------------- g --------------+ | | %e A162630 | | | +---------- f ----------+ | | | %e A162630 | | | | +------ d ------+ | | | | %e A162630 | | | | | +-- p --+ | | | | | %e A162630 | | | | | | s | | | | | | %e A162630 | | | | | | | | | | | | | %e A162630 | | | | | | | | | | | | %e A162630 | | | | | 2 | | | | | %e A162630 | | | | 4 2 | | | | %e A162630 | | | 6 2 4 | | | %e A162630 | | 8 4 2 6 | | %e A162630 | 10 6 2 4 8 | %e A162630 12 8 4 2 6 10 %e A162630 14 10 6 2 4 8 12 %e A162630 | | | | | | | | | | | | | %e A162630 | | | | | | +1/2+ | | | | | %e A162630 | | | | | +--- 3/2 ---+ | | | | %e A162630 | | | | +------- 5/2 -------+ | | | %e A162630 | | | +----------- 7/2 -----------+ | | %e A162630 | | +--------------- 9/2 ---------------+ | %e A162630 | +------------------ 11/2 -------------------+ %e A162630 +---------------------- 13/2 ----------------------- %t A162630 t[n_, 1] := n; t[n_, n_] := n-1; %t A162630 t[n_, k_] := Abs[2k - n - If[2k <= n+1, 2, 1]]; %t A162630 2 Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 17 2018 *) %Y A162630 Cf. A018226, A130517, A130556, A130598, A130602, A162626. %Y A162630 Other versions are A212012, A212122, A213362, A213372 %K A162630 nonn,tabl %O A162630 1,1 %A A162630 _Omar E. Pol_, Jul 10 2009 %E A162630 Corrected by _Omar E. Pol_, Jul 13 2009 %E A162630 More terms from _Omar E. Pol_, Jul 14 2012 %E A162630 New name from _Omar E. Pol_, Sep 02 2012