cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162642 Number of odd exponents in the canonical prime factorization of n.

This page as a plain text file.
%I A162642 #63 Jul 04 2025 19:16:46
%S A162642 0,1,1,0,1,2,1,1,0,2,1,1,1,2,2,0,1,1,1,1,2,2,1,2,0,2,1,1,1,3,1,1,2,2,
%T A162642 2,0,1,2,2,2,1,3,1,1,1,2,1,1,0,1,2,1,1,2,2,2,2,2,1,2,1,2,1,0,2,3,1,1,
%U A162642 2,3,1,1,1,2,1,1,2,3,1,1,0,2,1,2,2,2,2,2,1,2,2,1,2,2,2,2,1,1,1,0,1,3,1,2,3
%N A162642 Number of odd exponents in the canonical prime factorization of n.
%C A162642 a(n) is also known as the squarefree rank of n. - _Jason Kimberley_, Jul 08 2017
%C A162642 The number of primes that are infinitary divisors of n. - _Amiram Eldar_, Oct 01 2023
%H A162642 Jason Kimberley, <a href="/A162642/b162642.txt">Table of n, a(n) for n = 1..20000</a>
%H A162642 R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, <a href="http://combinatorialmath.com/index.php/JCMCC/article/view/4161">Square-free rank of integers</a>, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 106 (2018).
%H A162642 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F A162642 a(n) = A001221(n) - A162641(n).
%F A162642 a(n) = A001221(A007913(n)). - _Jason Kimberley_, Jan 06 2016
%F A162642 a(A000290(n)) = 0, n > 0. - _Michel Marcus_, Jan 08 2016
%F A162642 G.f.: Sum_{i>=1} Sum_{j>=1} (-1)^j x^(prime(i)^j)/(x^(prime(i)^j) - 1). - _Robert Israel_, Jan 15 2016
%F A162642 From _Antti Karttunen_, Nov 28 2017: (Start)
%F A162642 Additive with a(p^e) = A000035(e).
%F A162642 a(n) = A056169(n) + A295662(n).
%F A162642 A056169(n) <= a(n) <= A056169(n) + A295659(n).
%F A162642 a(n) <= A295664(n).
%F A162642 (End)
%F A162642 Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = gamma + Sum_{p prime} (log(1-1/p) + 1/(p+1)) = A077761 - A179119 = -0.0687327134... and gamma is Euler's constant (A001620). - _Amiram Eldar_, Dec 25 2021
%p A162642 A162642 := proc(n) add ( op(2,f) mod 2 ,f=ifactors(n)[2]) ; end proc: # _R. J. Mathar_, Mar 30 2011
%t A162642 {0}~Join~Table[Count[Last /@ FactorInteger@ n, e_ /; OddQ@ e], {n, 2, 105}] (* _Michael De Vlieger_, Jan 06 2016 *)
%o A162642 (Magma) A162642:=func<n|#{pe:pe in Factorisation(n)|IsOdd(pe[2])}>;
%o A162642 [A162642(n):n in[1..105]]; // _Jason Kimberley_, Dec 30 2015
%o A162642 (PARI) a(n) = {my(f = factor(n)); sum(k=1, #f~, f[k,2] % 2);} \\ _Michel Marcus_, Jan 08 2016
%o A162642 (Scheme)
%o A162642 ;; With memoization-macro definec.
%o A162642 (definec (A162642 n) (if (= 1 n) 0 (+ (A000035 (A067029 n)) (A162642 (A028234 n))))) ;; _Antti Karttunen_, Nov 28 2017
%Y A162642 Cf. A000290 (positions of zeros), A001221, A001620, A002035, A007913, A056169, A162641, A295316, A295659, A295662, A295664.
%K A162642 nonn,easy
%O A162642 1,6
%A A162642 _Reinhard Zumkeller_, Jul 08 2009