A162651 Numbers which can be expressed as the product of 3 positive integers in arithmetic progression.
1, 6, 8, 15, 24, 27, 28, 45, 48, 60, 64, 66, 80, 91, 105, 120, 125, 153, 162, 168, 190, 192, 210, 216, 224, 231, 276, 280, 288, 312, 315, 325, 336, 343, 360, 378, 384, 405, 435, 440, 480, 496, 504, 510, 512, 528, 561, 585, 624, 627, 630, 640, 648, 693, 703, 720
Offset: 1
Keywords
Examples
1 = 1*1*1, 6 = 1*2*3, 8 = 2*2*2, 15 = 1*3*5, 24 = 2*3*4. 120 = 1*8*15 = 2*6*10 = 4*5*6.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 1000: # for all terms <= N S:= {}: for i from 1 to floor(N^(1/3)) do S:= S union {seq(i*(i+j)*(i+2*j),j=0..floor((sqrt(i^4 + 8*i*N)-3*i^2)/(4*i)))} od: A:= sort(convert(S,list)); # Robert Israel, Feb 05 2020
-
PARI
al(n)={local(v,inc,prd); v=vector(n);inc=[0];prd=[1]; for(k=1,n, v[k]=vecmin(prd); if(v[k]==prd[ #prd],inc=concat(inc,[0]);prd=concat(prd,[(#inc)^3])); for(j=1,#prd,if(prd[j]==v[k],inc[j]++;prd[j]=j*(j+inc[j])*(j+2*inc[j])))); v}
-
Python
from itertools import count, islice from sympy import divisors from sympy.ntheory.primetest import is_square def A162651_gen(startvalue=1): # generator of terms >= startvalue for m in count(max(startvalue,1)): for r in divisors(m,generator=True): if is_square(r**2-m//r): yield m break A162651_list = list(islice(A162651_gen(),20)) # Chai Wah Wu, Jul 03 2023
Comments