cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162651 Numbers which can be expressed as the product of 3 positive integers in arithmetic progression.

Original entry on oeis.org

1, 6, 8, 15, 24, 27, 28, 45, 48, 60, 64, 66, 80, 91, 105, 120, 125, 153, 162, 168, 190, 192, 210, 216, 224, 231, 276, 280, 288, 312, 315, 325, 336, 343, 360, 378, 384, 405, 435, 440, 480, 496, 504, 510, 512, 528, 561, 585, 624, 627, 630, 640, 648, 693, 703, 720
Offset: 1

Views

Author

Keywords

Comments

Numbers of the form i*(i+j)*(i+2j), where i > 0 and j >= 0.

Examples

			1 = 1*1*1, 6 = 1*2*3, 8 = 2*2*2, 15 = 1*3*5, 24 = 2*3*4.
120 = 1*8*15 = 2*6*10 = 4*5*6.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # for all terms <= N
    S:= {}:
    for i from 1 to floor(N^(1/3)) do
      S:= S union {seq(i*(i+j)*(i+2*j),j=0..floor((sqrt(i^4 + 8*i*N)-3*i^2)/(4*i)))}
    od:
    A:= sort(convert(S,list)); # Robert Israel, Feb 05 2020
  • PARI
    al(n)={local(v,inc,prd);
    v=vector(n);inc=[0];prd=[1];
    for(k=1,n,
    v[k]=vecmin(prd);
    if(v[k]==prd[ #prd],inc=concat(inc,[0]);prd=concat(prd,[(#inc)^3]));
    for(j=1,#prd,if(prd[j]==v[k],inc[j]++;prd[j]=j*(j+inc[j])*(j+2*inc[j]))));
    v}
    
  • Python
    from itertools import count, islice
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A162651_gen(startvalue=1): # generator of terms >= startvalue
        for m in count(max(startvalue,1)):
            for r in divisors(m,generator=True):
                if is_square(r**2-m//r):
                    yield m
                    break
    A162651_list = list(islice(A162651_gen(),20)) # Chai Wah Wu, Jul 03 2023