cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162653 E.g.f. satisfies: A(x) = 1 + sinh(x*A(x)).

This page as a plain text file.
%I A162653 #5 Jan 11 2014 04:57:26
%S A162653 1,1,2,7,40,321,3216,38263,530048,8423425,151248640,3026679591,
%T A162653 66766414848,1609663922881,42114534017024,1188556743874711,
%U A162653 35992306103517184,1164129150556067841,40053439019074387968
%N A162653 E.g.f. satisfies: A(x) = 1 + sinh(x*A(x)).
%F A162653 E.g.f.: A(x) = (1/x)*Series_Reversion[x/(1 + sinh(x))].
%F A162653 a(n) = Sum_{k=0..n} C(n+1,k)/(n+1)*Sum_{j=0..k} (-1)^(k-j)*C(k,j)*(2j-k)^n/2^k.
%F A162653 Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
%F A162653 a(n,m) = Sum_{k=0..n} m*C(n+m,k)/(n+m)*Sum_{j=0..k} (-1)^(k-j)*C(k,j)*(2j-k)^n/2^k.
%F A162653 a(n) ~ sqrt(1/r^2 + 1/(r*sqrt(1-r^2))) * n^(n-1) / (exp(n) * r^n), where r = 0.4823099237172185...  is the root of the equation cosh(r+sqrt(1-r^2)) = 1/r. - _Vaclav Kotesovec_, Jan 10 2014
%e A162653 E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 40*x^4/4! + 321*x^5/5! +...
%t A162653 CoefficientList[1/x*InverseSeries[Series[x/(1+Sinh[x]),{x,0,20}],x],x]*Range[0,19]! (* _Vaclav Kotesovec_, Jan 10 2014 *)
%o A162653 (PARI) {a(n,m=1)=sum(k=0,n,m*binomial(n+m,k)/(n+m)*sum(j=0,k,(-1)^(k-j)*binomial(k,j)*(2*j-k)^n/2^k))}
%K A162653 nonn
%O A162653 0,3
%A A162653 _Paul D. Hanna_, Jul 08 2009