This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162660 #41 Jul 18 2025 09:45:19 %S A162660 0,1,0,0,2,0,-2,0,3,0,0,-8,0,4,0,16,0,-20,0,5,0,0,96,0,-40,0,6,0,-272, %T A162660 0,336,0,-70,0,7,0,0,-2176,0,896,0,-112,0,8,0,7936,0,-9792,0,2016,0, %U A162660 -168,0,9,0,0,79360,0,-32640,0,4032,0,-240,0,10,0 %N A162660 Triangle read by rows: coefficients of the complementary Swiss-Knife polynomials. %C A162660 Definition. V_n(x) = (skp(n, x+1) - skp(n, x-1))/2 where skp(n,x) are the Swiss-Knife polynomials A153641. - _Peter Luschny_, Jul 23 2012 %C A162660 Equivalently, let the polynomials V_n(x) (n>=0) defined by V_n(x) = Sum_{k=0..n} Sum_{v=0..k} (-1)^v*C(k,v)*L(k)*(x+v+1)^n; the sequence L(k) = -1 - H(k-1)*(-1)^floor((k-1)/4) / 2^floor(k/2) if k > 0 and L(0)=0; H(k) = 1 if k mod 4 <> 0, otherwise 0. %C A162660 (1) V_n(0) = 2^n * Euler(n,1) for n > 0, A155585. %C A162660 (2) V_n(1) = 1 - Euler(n). %C A162660 (3) V_{n-1}(0) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli numbers A027641/A027642. %C A162660 (4) V_{n-1}(0) n (2/2^n-2)/(2^n-1) = G_n the Genocchi number A036968 for n > 1. %C A162660 (5) V_n(1/2)2^{n} - 1 is a signed version of the generalized Euler (Springer) numbers, see A001586. %C A162660 The Swiss-Knife polynomials (A153641) are complementary to the polynomials defined here. Adding both gives polynomials with e.g.f. exp(x*t)*(sech(t)+tanh(t)), the coefficients of which are a signed variant of A109449. %C A162660 The Swiss-Knife polynomials as well as the complementary Swiss-Knife polynomials are closely related to the Bernoulli and Euler polynomials. Let F be a sequence and %C A162660 P_{F}[n](x) = Sum_{k=0..n} Sum_{v=0..k} (-1)^v*C(k,v)*F(k)*(x+v+1)^n. %C A162660 V_n(x) = P_{F}[n](x) with F(k)=L(k) defined above, are the Co-Swiss-Knife polynomials, %C A162660 W_n(x) = P_{F}[n](x) with F(k)=c(k) the Chen sequence defined in A153641 are the Swiss-Knife polynomials. %C A162660 B_n(x) = P_{F}[n](x-1) with F(k)=1/(k+1) are the Bernoulli polynomials, %C A162660 E_n(x) = P_{F}[n](x-1) with F(k)=2^(-k) are the Euler polynomials. %C A162660 The most striking formal difference between the Swiss-Knife-type polynomials and the Bernoulli-Euler type polynomials is: The SK-type polynomials have integer coefficients whereas the BE-type polynomials have rational coefficients. %C A162660 Let R be the exponential Riordan array (exp(x)*sech(x), x) = P * A119879 = 2*P(I + P^2)^(-1) where P denotes Pascal's triangle A007318. Then T = R - I. - _Peter Bala_, Mar 07 2024 %H A162660 Ayse Yilmaz Ceylan and Yilmaz Simsek, <a href="https://doi.org/10.3390/sym17071126">Formulae for Generalization of Touchard Polynomials with Their Generating Functions</a>, Symmetry (2025) Vol. 17, Issue 7, Art. No. 1126. See Eq. 28 and after. %H A162660 Leonhard Euler (1735), <a href="http://arxiv.org/abs/math/0506415">De summis serierum reciprocarum</a>, Opera Omnia I.14, E 41, 73-86; On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008. %H A162660 Peter Luschny, <a href="http://www.luschny.de/math/seq/SwissKnifePolynomials.html">The Swiss-Knife polynomials</a>. %H A162660 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SwissKnifePolynomials">Swiss-Knife Polynomials and Euler Numbers</a>. %H A162660 Wikipedia, <a href="http://en.wikipedia.org/wiki/Bernoulli_number">Bernoulli number</a>. %H A162660 J. Worpitzky, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002158698">Studien über die Bernoullischen und Eulerschen Zahlen</a>, Journal für die reine und angewandte Mathematik, 94 (1883), 203-232. %F A162660 T(n, k) = [x^(n-k)](skp(n,x+1)-skp(n,x-1))/2 where skp(n,x) are the Swiss-Knife polynomials A153641. - _Peter Luschny_, Jul 23 2012 %F A162660 E.g.f. exp(x*t)*tanh(t) = 0*(t^0/0!) + 1*(t^1/1!) + (2*x)*(t^2/2!) + (3*x^2-2)*(t^3/3!) + ... %F A162660 V_n(x) = -x^n + Sum_{k=0..n} C(n,k)*Euler(k)*(x+1)^(n-k). %e A162660 Triangle begins: %e A162660 [0] 0; %e A162660 [1] 1, 0; %e A162660 [2] 0, 2, 0; %e A162660 [3] -2, 0, 3, 0; %e A162660 [4] 0, -8, 0, 4, 0; %e A162660 [5] 16, 0, -20, 0, 5, 0; %e A162660 [6] 0, 96, 0, -40, 0, 6, 0; %e A162660 [7] -272, 0, 336, 0, -70, 0, 7, 0; %e A162660 [8] 0, -2176, 0, 896, 0, -112, 0, 8, 0; %e A162660 [9] 7936, 0, -9792, 0, 2016, 0, -168, 0, 9, 0; %p A162660 # Polynomials V_n(x): %p A162660 V := proc(n,x) local k,pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k); add(binomial(n,k)*euler(k)*pow(x+1,n-k),k=0..n) - pow(x,n) end: %p A162660 # Coefficients a(n): %p A162660 seq(print(seq(coeff(n!*coeff(series(exp(x*t)*tanh(t),t,16),t,n),x,k),k=0..n)),n=0..8); %t A162660 skp[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; v[n_, x_] := (skp[n, x+1]-skp[n, x-1])/2; t[n_, k_] := Coefficient[v[n, x], x, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 09 2014 *) %o A162660 (Sage) %o A162660 R = PolynomialRing(QQ, 'x') %o A162660 @CachedFunction %o A162660 def skp(n, x) : # Swiss-Knife polynomials A153641. %o A162660 if n == 0 : return 1 %o A162660 return add(skp(k, 0)*binomial(n, k)*(x^(n-k)-(n+1)%2) for k in range(n)[::2]) %o A162660 def A162660(n,k) : return 0 if k > n else R((skp(n, x+1)-skp(n, x-1))/2)[k] %o A162660 matrix(ZZ, 9, A162660) # _Peter Luschny_, Jul 23 2012 %Y A162660 V_n(k), n=0, 1, ..., k=0: A155585, k=1: A009832, %Y A162660 V_n(k), k=0, 1, ..., V_0: A000004, V_1: A000012, V_2: A005843, V_3: A100536. %Y A162660 Cf. A153641, A154341, A154342, A154343, A154344, A154345. %K A162660 sign,tabl %O A162660 0,5 %A A162660 _Peter Luschny_, Jul 09 2009