cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162662 Sequence of alternating increasing odd and increasing even numbers such that the sum of any two terms of opposite parity is a prime number.

This page as a plain text file.
%I A162662 #24 Dec 22 2014 17:44:35
%S A162662 1,2,3,4,9,10,27,70,57,100,267,1060,1227,27790,1479,146380,3459,
%T A162662 2508040,49527,35506900,470079
%N A162662 Sequence of alternating increasing odd and increasing even numbers such that the sum of any two terms of opposite parity is a prime number.
%C A162662 a(n+1) is taken to be the smallest number, greater than a(n-2), of opposite parity to a(n) that satisfies the condition.
%C A162662 A000034: Period 2: repeat [1, 2] is another sequence satisfying the definition without the increasing constraint. - _Michel Marcus_, Dec 22 2014
%e A162662 1060 + 267 = 1327 is prime;
%e A162662 1060 + 27 = 1087 is prime;
%e A162662 1060 + 9 = 1069 is prime;
%e A162662 1060 + 3 = 1063 is prime;
%e A162662 1060 + 1 = 1061 is prime.
%p A162662 with(numtheory):nn:=30:T:=array(1..nn): T[1]:=1:a:=1:for k from 2 to nn do:id:=0:for
%p A162662   n from k to 1000000 while(id=0) do:n1:=irem(n,2):i:=0:for p from 1 to a do:
%p A162662   if n=T[p] then i:=0:else fi: x:=n+T[p]:if type(x, prime)=true then i:=i+1:else
%p A162662   fi:od: if i=ceil(a/2) then T[k]:=n:print(n):a:=a+1:id:=1:else fi:od:od:
%o A162662 (PARI) ok(k, m, v) = {if (k % 2, js = 2, js = 1); forstep(j=js, m, 2, if (! isprime(k + v[j]), return (0));); return (1);}
%o A162662 findval(n, v) = {if (n <=2, k = n, k = v[n-2]+2); while (!ok (k, n-1, v), k+= 2); k;}
%o A162662 lista(nn) = {a = vector(nn); a[1] = 1; print1(a[1], ", "); for (n=2, nn, a[n] = findval(n, a); print1(a[n], ", "););} \\ _Michel Marcus_, Dec 22 2014
%Y A162662 Cf. A180743, A115760.
%K A162662 nonn,more
%O A162662 1,2
%A A162662 _Michel Lagneau_, Jan 27 2011
%E A162662 a(18)-a(21) from _Michel Marcus_, Dec 22 2014
%E A162662 Name clarified by _Michel Marcus_, Dec 22 2014