This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162681 #10 Mar 01 2019 23:33:44 %S A162681 2,3,6,7,29,72 %N A162681 Numbers k such that k^2 is a sum of three factorials. %C A162681 The next term after 72 is larger than 10^40 (if it exists). - _R. J. Mathar_, Jul 16 2009 %e A162681 2^2 = 1! + 1! + 2!; %e A162681 3^2 = 1! + 2! + 3!; %e A162681 6^2 = 3! + 3! + 4!; %e A162681 7^2 = 1! + 4! + 4!; %e A162681 29^2 = 1! + 5! + 6!; %e A162681 72^2 = 4! + 5! + 7!. %p A162681 s := 10^40 ; sqr := s^2 : for a from 1 do if a! > sqr then break; fi; for b from a do if a!+b! > sqr then break; fi; for c from b do if a!+b!+c! > sqr then break; fi; if issqr(a!+b!+c!) then print( sqrt(a!+b!+c!)); fi; od: od: od: # _R. J. Mathar_, Jul 16 2009 %p A162681 w := 7: f := proc (x, y, z) options operator, arrow: sqrt(factorial(x)+factorial(y)+factorial(z)) end proc: A := {}: for x to w do for y to w do for z to w do if type(f(x, y, z), integer) = true then A := `union`(A, {f(x, y, z)}) else end if end do end do end do: A; # _Emeric Deutsch_, Aug 03 2009 %t A162681 $MaxExtraPrecision=Infinity; lst={};Do[Do[Do[x=(a!+b!+c!)^(1/2);If[x==IntegerPart[x], AppendTo[lst,x]],{c,b,2*4!}],{b,a,2*4!}],{a,2*4!}];Union[lst] %Y A162681 Cf. A065433, A082875. %K A162681 nonn %O A162681 1,1 %A A162681 _Vladimir Joseph Stephan Orlovsky_, Jul 10 2009 %E A162681 Definition rephrased by _R. J. Mathar_, Jul 16 2009