A162685 Positive integers that are not prime powers and are not divisible by any consecutive primes.
10, 14, 20, 21, 22, 26, 28, 33, 34, 38, 39, 40, 44, 46, 50, 51, 52, 55, 56, 57, 58, 62, 63, 65, 68, 69, 74, 76, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 104, 106, 110, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 133, 134, 136, 141, 142
Offset: 1
Keywords
Examples
220 is factored as 2^2 * 5 * 11. Since both 2 and 5 are not consecutive primes, and 5 and 11 are not consecutive primes (2 and 5 are separated by 3, and 5 and 11 are separated by 7), then 220 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA162685 := proc(n) local pfs,i; pfs := numtheory[factorset](n) ; if nops(pfs) <= 1 then RETURN(false) ; else pfs := sort(convert(pfs,list)) ; for i from 2 to nops(pfs) do if op(i,pfs) = nextprime(op(i-1,pfs)) then RETURN(false): fi; od: RETURN(true) ; fi; end: A162685 := proc(n) local a; if n = 1 then 10; else for a from procname(n-1)+1 do if isA162685(a) then RETURN(a) ; fi; od: fi; end: seq(A162685(n),n=1..100) ; # R. J. Mathar, Jul 13 2009
-
Mathematica
q[n_] := Module[{f = FactorInteger[n]}, Length[f] > 1 && SequenceCount[f[[;; , 1]], {p1_, p2_} /; p2 == NextPrime[p1]] == 0]; Select[Range[150], q] (* Amiram Eldar, Apr 10 2021 *)
Extensions
More terms from R. J. Mathar, Jul 13 2009