cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162736 G.f. is the polynomial (Product_{k=1..30} (1 - x^(3*k)))/(1-x)^30.

This page as a plain text file.
%I A162736 #10 Sep 08 2022 08:45:46
%S A162736 1,30,465,4959,40890,277791,1618199,8306730,38329299,161383520,
%T A162736 627356796,2272915164,7734020120,24874638204,76028550900,221849950497,
%U A162736 620471946324,1669004265525,4330837858674,10869702783150,26449453637412
%N A162736 G.f. is the polynomial (Product_{k=1..30} (1 - x^(3*k)))/(1-x)^30.
%C A162736 This is a row of the triangle in A162499. Only finitely many terms are nonzero.
%H A162736 G. C. Greubel, <a href="/A162736/b162736.txt">Table of n, a(n) for n = 0..1365</a> (terms 0..1000 from Harvey P. Dale)
%t A162736 CoefficientList[Series[Times@@(1-x^Range[3,90,3])/(1-x)^30,{x,0,20}],x] (* _Harvey P. Dale_, Oct 04 2011 *)
%o A162736 (PARI) x='x+O('x^50); A = prod(k=1, 30, (1-x^(3*k)))/(1-x)^30; Vec(A) \\ _G. C. Greubel_, Jul 07 2018
%o A162736 (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..30]])/(1-x)^30; Coefficients(R!(F)); // _G. C. Greubel_, Jul 07 2018
%K A162736 nonn
%O A162736 0,2
%A A162736 _N. J. A. Sloane_, Dec 02 2009