A162742 Reverse digits in the binary representation of each prime base in the prime factorization of n.
1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 13, 3, 11, 7, 15, 1, 17, 9, 25, 5, 21, 13, 29, 3, 25, 11, 27, 7, 23, 15, 31, 1, 39, 17, 35, 9, 41, 25, 33, 5, 37, 21, 53, 13, 45, 29, 61, 3, 49, 25, 51, 11, 43, 27, 65, 7, 75, 23, 55, 15, 47, 31, 63, 1, 55, 39, 97, 17, 87, 35, 113, 9, 73, 41, 75, 25, 91, 33
Offset: 1
Examples
At n=8=2^3, represent 2 as 10 in binary, reverse 10 to give 1, and recombine as 1^3=1 = a(8). At n=14=2*7 =(10)*(111) in binary, reverse the factors to give (1)*(111)=1*7=7=a(14).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
A030101 := proc(n) local dgs ; dgs := convert(n,base,2) ; add( op(-i,dgs)*2^(i-1),i=1..nops(dgs)) ; end: A162742 := proc(n) local a,p ; a := 1 ; for p in ifactors(n)[2] do a := a* A030101(op(1,p))^op(2,p) ; od: a; end:
-
Mathematica
f[p_, e_] := IntegerReverse[p, 2]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 24 2023 *)
-
Python
from math import prod from sympy import factorint def A162742(n): return prod(int(bin(f)[2:][::-1], 2)**e for f, e in factorint(n).items()) print([A162742(n) for n in range(1, 81)]) # Michael S. Branicky, Oct 07 2024
Extensions
Cleaned up the definition and corrected the second example - R. J. Mathar, Aug 03 2009
Comments