cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162748 Row sums of factorial-Pascal matrix A162747.

Original entry on oeis.org

1, 2, 5, 14, 42, 132, 430, 1444, 4984, 17648, 64024, 237712, 902416, 3499680, 13853424, 55931168, 230142848, 964460288, 4113656704, 17846729984, 78708574976, 352678567424, 1604739694848, 7411167960576, 34723660917760
Offset: 0

Views

Author

Paul Barry, Jul 12 2009

Keywords

Comments

Second binomial transform of aerated factorial numbers. Binomial transform of A084261. Hankel transform is A137704.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*2^(n-k)*(k/2)!*(1+(-1)^k)/2,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 15 2013 *)

Formula

G.f.: 1/(1-2x-x^2/(1-2x-x^2/(1-2x-2x^2/(1-2x-2x^2/(1-2x-3x^2/(1-2x-3x^2/(1-2x-4x^2/(1-2x-... (continued fraction);
a(n)=sum{k=0..floor(n/2), C(n,2k)*2^(n-2k)*F(k+1)}=sum{k=0..n, C(n,k)*2^(n-k)*(k/2)!*(1+(-1)^k)/2}.
a(n)=sum{k=0..n, A161556(n,k)*2^k}. - Paul Barry, Apr 11 2010
E.g.f.: exp(2x)*(1+(sqrt(Pi)/2)*x*exp(x^2/4)*erf(x/2)). - Paul Barry, Sep 17 2010
Apparently -2*a(n) +8*a(n-1) +(n-8)*a(n-2) +2*(2-n)*a(n-3)=0. - R. J. Mathar, Oct 25 2012
a(n) ~ 1/2 * sqrt(Pi*n) * exp(2*sqrt(2*n)-n/2-2) * (n/2)^(n/2) * (1 + 1/(3*sqrt(2*n))). - Vaclav Kotesovec, Aug 15 2013

Extensions

Minor edits by Vaclav Kotesovec, Jul 22 2015