cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162849 Pairs of numbers that add up to the 'backward decimal expansion' of fraction 1/109 and whose difference is the 'backward decimal expansion' of fraction 1/89.

This page as a plain text file.
%I A162849 #20 Feb 25 2021 02:03:27
%S A162849 0,1,10,101,2010,10201,303010,1040201,40703010,107050201,5140803010,
%T A162849 11112050201,625200803010,1162613050201,74146210803010,
%U A162849 122513313050201,8639754210803010,12992793413050201,993903355210803010
%N A162849 Pairs of numbers that add up to the 'backward decimal expansion' of fraction 1/109 and whose difference is the 'backward decimal expansion' of fraction 1/89.
%C A162849 Sum of pairs also (consecutive) cumulative sum of 110^n (or numerators of 1/110^1 + 1/110^2 + ... + 1/110^n, representing fraction 1/109).
%C A162849 Difference of pairs also cumulative sum of 90^n (or numerators of 1/90^1 + 1/90^2 + ... + 1/90^n, representing fraction 1/89).
%H A162849 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,201,0,-10100,0,9900).
%F A162849 For n even: a(n) = 100*a(n-2)+10*a(n-1), for n odd: a(n) = 100*a(n-2)+10*a(n-3)+1; with a(0)=0, a(1)=1.
%F A162849 From _R. J. Mathar_, Feb 11 2010: (Start)
%F A162849 a(n) = 201*a(n-2) - 10100*a(n-4) + 9900*a(n-6).
%F A162849 G.f.: x^2*(-1-10*x+100*x^2)/((x-1)*(1+x)*(90*x^2-1)*(110*x^2-1)). (End)
%e A162849 In pairs:
%e A162849            0,           1;
%e A162849           10,         101;
%e A162849         2010,       10201;
%e A162849       303010,     1040201;
%e A162849     40703010,   107050201;
%e A162849   5140803010, 11112050201;
%Y A162849 Cf. A162741, A161999, A007318, A000045.
%K A162849 nonn,base,less
%O A162849 1,3
%A A162849 _Mark Dols_, Jul 14 2009
%E A162849 More terms from _R. J. Mathar_, Feb 11 2010