This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162857 #19 Oct 07 2024 01:22:20 %S A162857 7,11,19,43,67,163,211,283,331,523,547,691,787,907,1051,1123,1171, %T A162857 1531,1723,1867,2011,2083,2251,2347,2371,2467,2707,2731,2803,2971, %U A162857 3187,3307,3547,3643,3907,3931,4051,4243,4363,4603,4651,4723,5107,5227,5443,5923 %N A162857 Primes of the form 4p - 1, p a prime. %C A162857 If 4p - 1 is prime then n^2 + n + p = p(4p - 1) for some n = 1, 2, 3, ... [Proof. Let n + 1 = 2p, etc.] %C A162857 From _Alonso del Arte_, Jan 14 2024: (Start) %C A162857 The first six terms correspond to rings of algebraic integers of Q(sqrt(-a(n))) which are unique factorization domains. %C A162857 In the ring of algebraic integers of Q(sqrt(-a(n))), the corresponding prime p = (a(n) + 1)/4 is divisible by 1/2 - sqrt(-a(n))/2 and 1/2 + sqrt(-a(n))/2, both of those being algebraic integers with minimal polynomial x^2 - x + p. For example, in Q(sqrt(-163)), we see that (1/2 - sqrt(-163)/2)(1/2 + sqrt(-163)/2) = 1/4 + 163/4 = 41, with both of the divisors having the minimal polynomial x^2 - x + 41. (End) %F A162857 a(n) >> n log^2 n. - _Charles R Greathouse IV_, Jun 14 2022 %t A162857 Select[Prime[Range[1000]], PrimeQ[(# + 1)/4] &] (* _Alonso del Arte_, Jan 14 2024 *) %o A162857 (PARI) is(n)=isprime(n) && isprime(4*n-1) \\ _Charles R Greathouse IV_, Jun 14 2022 %o A162857 (Scala) def isPrime(num: Int): Boolean = Math.abs(num) match { %o A162857 case 0 => false; case 1 => false; case n => (2 to Math.floor(Math.sqrt(n)).toInt) forall (p => n % p != 0) %o A162857 } %o A162857 ((1 to 2500).map(4 * _ - 1)).filter(n => isPrime(n) && isPrime((n + 1)/4)) // _Alonso del Arte_, Jan 14 2024 %Y A162857 Cf. A062737 for the corresponding primes p. %Y A162857 Overlaps with A003173, the Heegner numbers (last six terms of that one match the first six of this one). %K A162857 nonn,easy %O A162857 1,1 %A A162857 _Daniel Tisdale_, Jul 14 2009 %E A162857 More terms from _N. J. A. Sloane_, Jul 19 2009