This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162874 #20 Aug 26 2021 14:51:06 %S A162874 69497,69499,416501,416503,474497,474499,632501,632503,960497,960499, %T A162874 1068497,1068499,1226501,1226503,1402871,1402873,1464101,1464103, %U A162874 1635497,1635499,1716497,1716499,1919429,1919431,1986497,1986499 %N A162874 Twin primes p and r (p < r) such that p-1, p+1 and r+1 are not cubefree. %C A162874 A variant of A162989, which is the main entry. - _N. J. A. Sloane_, Aug 12 2009 %C A162874 Note that p+1 = r-1. Thus, the sequence describes twin primes whose immediate neighbors are not cubefree. - _Tanya Khovanova_, Aug 22 2021 %e A162874 69497 and 69499 twin primes. Moreover, 69496 is divisible by 2^3, 69498 is divisible by 3^3, and 69500 is divisible by 5^3. Thus, 69497 and 69499 are in the sequence. - _Tanya Khovanova_, Aug 22 2021 %t A162874 s=Select[Prime@Range[200000],PrimeQ[#+2]&&Min[Max[Last/@FactorInteger[#]]&/@{#-1,#+1,#+3}]>2&];Sort@Join[s,s+2] (* _Giorgos Kalogeropoulos_, Aug 22 2021 *) %o A162874 (Python) %o A162874 from sympy import nextprime, factorint %o A162874 def cubefree(n): return max(e for e in factorint(n).values()) <= 2 %o A162874 def auptop(limit): %o A162874 alst, p, r = [], 3, 5 %o A162874 while p < limit: %o A162874 if r - p == 2 and not any(cubefree(i) for i in [p-1, p+1, r+1]): %o A162874 alst.extend([p, r]) %o A162874 p, r = r, nextprime(p) %o A162874 return alst %o A162874 print(auptop(2*10**6)) # _Michael S. Branicky_, Aug 22 2021 %Y A162874 Cf. A089189, A089194, A162870, A162872, A162873. %K A162874 nonn %O A162874 1,1 %A A162874 _Vladimir Joseph Stephan Orlovsky_, Jul 15 2009 %E A162874 Terms corrected by _Zak Seidov_, Jul 19 2009 %E A162874 Edited by _N. J. A. Sloane_, Aug 12 2009