A162909 Numerators of Bird tree fractions.
1, 1, 2, 2, 1, 3, 3, 3, 3, 1, 2, 5, 4, 4, 5, 5, 4, 4, 5, 2, 1, 3, 3, 8, 7, 5, 7, 7, 5, 7, 8, 8, 7, 5, 7, 7, 5, 7, 8, 3, 3, 1, 2, 5, 4, 4, 5, 13, 11, 9, 12, 9, 6, 10, 11, 11, 10, 6, 9, 12, 9, 11, 13, 13, 11, 9, 12, 9, 6, 10, 11, 11, 10, 6, 9, 12, 9, 11, 13, 5, 4, 4, 5, 2, 1, 3, 3, 8, 7, 5, 7, 7, 5, 7, 8
Offset: 1
Examples
The first four levels of the Bird tree: [1/1] [1/2, 2/1] [2/3, 1/3, 3/1, 3/2], [3/5, 3/4, 1/4, 2/5, 5/2, 4/1, 4/3, 5/3].
Links
- R. Hinze, Functional pearls: the bird tree, J. Funct. Programming 19 (2009), no. 5, 491-508.
- Index entries for fraction trees
Crossrefs
Programs
-
Haskell
import Ratio bird :: [Rational] bird = branch (recip . succ) (succ . recip) 1 branch f g a = a : branch f g (f a) \/ branch f g (g a) (a : as) \/ bs = a : (bs \/ as) a162909 = map numerator bird a162910 = map denominator bird
-
R
blocklevel <- 6 # arbitrary a <- 1 for(m in 1:blocklevel) for(k in 0:(2^(m-1)-1)){ a[2^m+k] = a[2^m-k-1] a[2^m+2^(m-1)+k] = a[2^m+k] + a[2^(m-1)+k] } a # Yosu Yurramendi, Jul 11 2014
Formula
a(2^m+k) = a(2^m-k-1), a(2^m+2^(m-1)+k) = a(2^m+k) + a(2^(m-1)+k), a(1) = 1, m=0,1,2,3,..., k=0,1,...,2^(m-1)-1. - Yosu Yurramendi, Jul 11 2014
a(A097072(n)*2^m+k) = A268087(2^m+k), m >= 0, 0 <= k < 2^m, n > 1. a(A000975(n)) = 1, n > 0. - Yosu Yurramendi, Feb 21 2017
Comments