cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162932 a(n) = A053445(n-2) - A053445(n-4).

This page as a plain text file.
%I A162932 #30 Dec 07 2024 13:28:30
%S A162932 1,0,1,1,1,1,3,1,3,4,4,4,8,6,10,11,13,15,22,20,28,33,39,43,58,60,77,
%T A162932 88,104,119,148,160,197,226,265,300,363,404,481,549,638,727,858,961,
%U A162932 1126,1283,1480,1680,1953,2201,2544,2887,3309,3750,4312,4857,5566,6301,7175
%N A162932 a(n) = A053445(n-2) - A053445(n-4).
%C A162932 a(n) counts partitions of n such that all parts are >=2 and the largest part occurs at least three times, see example.
%H A162932 Andrew van den Hoeven, <a href="/A162932/b162932.txt">Table of n, a(n) for n = 6..10000</a>
%F A162932 From _Mircea Merca_, Jun 11 2012: (Start)
%F A162932 a(n) = p(n) - 2*p(n-1) + 2*p(n-3) - p(n-4) for n >= 6, where p(n) = A000041(n).
%F A162932 G.f.: -1 + x - x^3 + (1 - x)*Product_{k > 2} 1/(1 - x^k). (End)
%F A162932 a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^3 / (36*sqrt(2)*n^(5/2)). - _Vaclav Kotesovec_, Jun 02 2018
%F A162932 G.f.: Sum_{n >= 1} q^(3*n+3)/Product_{k = 1..n} 1 - q^(k+1). - _Peter Bala_, Dec 01 2024
%e A162932 For n = 19 the a(19) = 6 partitions are 5554, 44443, 55522, 444322, 3333322 and 33322222.
%t A162932 Table[PartitionsP[n] - 2 PartitionsP[n - 1] + 2 PartitionsP[n - 3] - PartitionsP[n - 4], {n, 6, 70}] (* _Vincenzo Librandi_, Dec 09 2014 *)
%o A162932 (Magma) a:=func<n | NumberOfPartitions(n)-2*NumberOfPartitions(n-1)+2*NumberOfPartitions(n-3)-NumberOfPartitions(n-4)>; [a(n): n in [6..100]]; // _Vincenzo Librandi_, Dec 09 2014
%Y A162932 Cf. A162931, A079946.
%K A162932 nonn
%O A162932 6,7
%A A162932 _Alford Arnold_, Jul 17 2009
%E A162932 Keyword:tabf removed, indexing corrected, sequence extended by _R. J. Mathar_, Sep 17 2009