This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162934 #13 Dec 08 2024 10:20:50 %S A162934 1,0,0,1,0,0,2,0,0,3,1,0,4,2,2,5,3,4,9,5,6,13,11,10,19,17,19,28,27,31, %T A162934 44,41,49,66,68,74,98,104,118,145,157,178,220,234,268,322,354,397,473, %U A162934 521,591,686,765,863,1003,1107,1254,1444,1609 %N A162934 Shift sequence A162932 twice then subtract from the original sequence. %C A162934 From _Alford Arnold_, Dec 17 2009: (Start) %C A162934 At n = 24, six of the partitions can be associated with the sixth row of this triangular array: %C A162934 333 %C A162934 444 3333 %C A162934 555 4443 33333 %C A162934 666 5553 44433 333333 %C A162934 777 6663 55533 444333 3333333 %C A162934 888 7773 66633 555333 4443333 33333333 %C A162934 The other three partitions are new; and hence on their first row, so 6*1 + 1*3 = 9. %C A162934 In a similar manner, the 44 cases at n = 36 can be computed using the array row numbers and the number of applicable partitions. Thus we have: %C A162934 (10, 5, 3, 2, 1) times (1, 3, 2, 3, 7) providing 10 + 15 + 6 + 6 + 7 = 44 cases. (End) %F A162934 G.f.: Sum_{n >= 0} q^(3*n+6)/Product_{k = 1..n} 1 - q^(k+2). - _Peter Bala_, Dec 01 2024 %e A162934 For n = 24, the sequence counts these nine partitions of 24: 888, 7773, 66633, 55554, 555333, 4443333, 6666, 444444, 33333333. %Y A162934 Cf. A000041, A002865, A053445, A162932. %K A162934 nonn,easy %O A162934 6,7 %A A162934 _Alford Arnold_, Aug 05 2009, Aug 06 2009 %E A162934 More terms from _Alford Arnold_, Dec 17 2009 %E A162934 More terms from _Joerg Arndt_, Jul 16 2015