cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162934 Shift sequence A162932 twice then subtract from the original sequence.

This page as a plain text file.
%I A162934 #13 Dec 08 2024 10:20:50
%S A162934 1,0,0,1,0,0,2,0,0,3,1,0,4,2,2,5,3,4,9,5,6,13,11,10,19,17,19,28,27,31,
%T A162934 44,41,49,66,68,74,98,104,118,145,157,178,220,234,268,322,354,397,473,
%U A162934 521,591,686,765,863,1003,1107,1254,1444,1609
%N A162934 Shift sequence A162932 twice then subtract from the original sequence.
%C A162934 From _Alford Arnold_, Dec 17 2009: (Start)
%C A162934 At n = 24, six of the partitions can be associated with the sixth row of this triangular array:
%C A162934  333
%C A162934  444 3333
%C A162934  555 4443 33333
%C A162934  666 5553 44433 333333
%C A162934  777 6663 55533 444333 3333333
%C A162934  888 7773 66633 555333 4443333 33333333
%C A162934 The other three partitions are new; and hence on their first row, so 6*1 + 1*3 = 9.
%C A162934 In a similar manner, the 44 cases at n = 36 can be computed using the array row numbers and the number of applicable partitions. Thus we have:
%C A162934 (10, 5, 3, 2, 1) times (1, 3, 2, 3, 7) providing 10 + 15 + 6 + 6 + 7 = 44 cases. (End)
%F A162934 G.f.: Sum_{n >= 0} q^(3*n+6)/Product_{k = 1..n} 1 - q^(k+2). - _Peter Bala_, Dec 01 2024
%e A162934 For n = 24, the sequence counts these nine partitions of 24: 888, 7773, 66633, 55554, 555333, 4443333, 6666, 444444, 33333333.
%Y A162934 Cf. A000041, A002865, A053445, A162932.
%K A162934 nonn,easy
%O A162934 6,7
%A A162934 _Alford Arnold_, Aug 05 2009, Aug 06 2009
%E A162934 More terms from _Alford Arnold_, Dec 17 2009
%E A162934 More terms from _Joerg Arndt_, Jul 16 2015