cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162938 A 2-based alternate sum over the numbers from 0 to the n-th nonprime.

Original entry on oeis.org

2, 5, 8, 11, 14, 25, 17, 20, 23, 40, 26, 29, 32, 55, 35, 38, 65, 41, 70, 44, 47, 50, 85, 53, 90, 56, 59, 100, 62, 65, 68, 115, 71, 74, 125, 77, 130, 80, 83, 140, 86, 145, 89, 92, 95, 160, 98, 165, 101, 104, 175, 107, 110, 113, 190, 116, 195, 119, 122, 205, 125, 128, 215
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 18 2009

Keywords

Comments

Define a 2-based sum S(n) = Sum_{i=0..n} (2 - (-1)^i*i) = 2*n - (-1)^n*A152832(n).
a(n) is this sum evaluated at A141468(n).

Examples

			a(1) = 2 - 0*(-1)^0 = 2.
a(2) = 2 - 0*(-1)^0 + 2 - 1*(-1)^1 = 2 + 3 = 5.
a(3) = 2 - 0*(-1)^0 + 2 - 1*(-1)^1 + 2 - 2*(-1)^2 + 2 - 3*(-1)^3 + 2 - 4*(-1)^4 = 2 + 3 + 0 + 5 - 2 = 8.
		

Crossrefs

Cf. A141468.

Programs

  • Maple
    A152832 := proc(n) option remember; if n = 0 then -2; else n-procname(n-1) ; fi; end:
    A141468 := proc(n) option remember ; local a; if n <=2 then n-1; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a); fi; od: fi; end:
    A162938 := proc(n) local npr; npr := A141468(n) ; 2*npr-(-1)^npr*A152832(npr) ; end:
    seq(A162938(n),n=1..100) ; # R. J. Mathar, Jul 21 2009

Formula

a(n) = Sum_{x=0..n-th nonprime} (2 - x*(-1)^x). - Juri-Stepan Gerasimov, Jul 28 2009

Extensions

Definition edited by R. J. Mathar, Jul 21 2009