This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A162989 #6 Nov 24 2020 16:38:58 %S A162989 69497,416501,474497,632501,960497,1068497,1226501,1402871,1464101, %T A162989 1635497,1716497,1919429,1986497,2114249,2144501,2283497,2645189, %U A162989 3120497,3174497,3232751,3305501,3332501,3525497,3637169,3998537 %N A162989 Lesser of twin primes p such that none of p-1, p+1 and p+3 are cubefree. %H A162989 Robert Israel, <a href="/A162989/b162989.txt">Table of n, a(n) for n = 1..1000</a> %e A162989 p=69497 and p+2=69499 are twin primes, also: %e A162989 p-1=69496=2^3*7*17*73 %e A162989 p+1=69498=2*3^5*11*13 %e A162989 p+3=69500=2^2*5^3*139. %p A162989 cf:= proc(n) local F; %p A162989 F:= ifactors(n)[2]; %p A162989 max(map(t->t[2],F))>=3 %p A162989 end proc: %p A162989 select(t -> isprime(t) and isprime(t+2) and cf(t-1) and cf(t+1) and cf(t+3), [seq(i,i=5..10^7,6)]); # _Robert Israel_, Nov 24 2020 %t A162989 f[m_]:=Max[Last/@FactorInteger[m]]>=3; %t A162989 S={};Do[If[PrimeQ[p=6x-1]&&PrimeQ[p+2]&& %t A162989 f[p-1]==f[p+1]==f[p+3]==True,AppendTo[S,p]],{x,1,10^6}];S %Y A162989 Cf. A046099. %Y A162989 See A162874 for another version. %K A162989 nonn %O A162989 1,1 %A A162989 _Zak Seidov_, Jul 19 2009 %E A162989 Definition clarified by _Robert Israel_, Nov 24 2020