A162990 Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).
4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1
Examples
The first few rows of the triangle are: [4] [36, 9] [576, 144, 64] [14400, 3600, 1600, 900] The first few MN(z;n) polynomials are: MN(z;n=1) = 4 MN(z;n=2) = 36 + 9*z MN(z;n=3) = 576 + 144*z + 64*z^2 MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
References
- Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..5050 (rows 1..100 of the triangle, flattened).
- Eric Weisstein's World of Mathematics, Dilogarithm.
Crossrefs
A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A001048, A052747, A052759, A052778, A052794 are related to the square root of the first five right hand columns.
A000142, A001710, A002301, A133799, A129923, A001715 are related to the square root of the first six left hand columns.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
Programs
-
Maple
a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
-
Mathematica
Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)
Formula
a(n,m) = ((n+1)!/m)^2 for n >= 1 and 1 <= m <= n.
Comments