cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162996 a(n) = Round(kn * (log(kn)+1)), with k = 2.216 as an approximation of R_n = n-th Ramanujan prime A104272(n) and Abs(a(n)-R_n) < 2 * Sqrt(a(n)) for n in [1..1000].

Original entry on oeis.org

4, 11, 19, 28, 38, 48, 58, 69, 80, 91, 102, 114, 126, 138, 150, 162, 174, 187, 200, 212, 225, 238, 251, 265, 278, 291, 305, 318, 332, 345, 359, 373, 387, 401, 415, 429, 443, 458, 472, 486, 501, 515, 530, 544, 559, 573, 588, 603, 618, 632, 647, 662, 677, 692
Offset: 1

Views

Author

Daniel Forgues, Jul 21 2009, Jul 29 2009

Keywords

Comments

a(n) approximates the {kn}-th prime number, which in turn approximates the n-th Ramanujan prime, and k = 2.216 is nearly optimal for n in [1..1000] since a(n) - 2*sqrt(a(n)) < R_n < a(n) + 2*sqrt(a(n)) in that range. Since R_n ~ Prime(2n) ~ 2n * (log(2n)+1) ~ 2n * log(2n), whereas A162996(n) ~ Prime(kn) ~ kn * (log(kn)+1) ~ kn * log(kn), giving A162996(n) / R_n ~ k/2 = 2.216/2 = 1.108 which implies an asymptotic overestimate of about 10% (a better approximation would need k to depend on n and be asymptotic to 2).
R_n is the smallest number such that if x >= R_n, then pi(x) - pi(x/2) >= n, where pi(x) is the number of primes <= x.

Crossrefs

Cf. A163160 (Round(kn * (log(kn)+1)) - R_n, where k = 2.216 and R_n = n-th Ramanujan prime).
Cf. A104272 (Ramanujan primes).