cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163074 Swinging primes: primes which are within 1 of a swinging factorial (A056040).

This page as a plain text file.
%I A163074 #11 May 08 2020 17:37:35
%S A163074 2,3,5,7,19,29,31,71,139,251,631,3433,12011,48619,51479,51481,2704157,
%T A163074 155117519,280816201,4808643121,35345263801,81676217699,1378465288199,
%U A163074 2104098963721,5651707681619,94684453367401,386971244197199,1580132580471899,1580132580471901
%N A163074 Swinging primes: primes which are within 1 of a swinging factorial (A056040).
%C A163074 Union of A163075 and A163076.
%H A163074 Jinyuan Wang, <a href="/A163074/b163074.txt">Table of n, a(n) for n = 1..103</a>
%H A163074 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H A163074 Peter Luschny, <a href="http://www.luschny.de/math/primes/SwingingPrimes.html"> Swinging Primes.</a>
%e A163074 3$ + 1 = 7 is prime, so 7 is in the sequence. (Here '$' denotes the swinging factorial function.)
%p A163074 # Seq with arguments <= n:
%p A163074 a := proc(n) select(isprime,map(x -> A056040(x)+1,[$1..n]));
%p A163074 select(isprime,map(x -> A056040(x)-1,[$1..n]));
%p A163074 sort(convert(convert(%%,set) union convert(%,set),list)) end:
%t A163074 Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f - 1], Sow[p]]; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 45}]][[2, 1]] // Union (* _Jean-François Alcover_, Jun 28 2013 *)
%Y A163074 Cf. A088054, A163075, A163076.
%K A163074 nonn
%O A163074 1,1
%A A163074 _Peter Luschny_, Jul 21 2009
%E A163074 More terms from _Jinyuan Wang_, Mar 22 2020