This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163074 #11 May 08 2020 17:37:35 %S A163074 2,3,5,7,19,29,31,71,139,251,631,3433,12011,48619,51479,51481,2704157, %T A163074 155117519,280816201,4808643121,35345263801,81676217699,1378465288199, %U A163074 2104098963721,5651707681619,94684453367401,386971244197199,1580132580471899,1580132580471901 %N A163074 Swinging primes: primes which are within 1 of a swinging factorial (A056040). %C A163074 Union of A163075 and A163076. %H A163074 Jinyuan Wang, <a href="/A163074/b163074.txt">Table of n, a(n) for n = 1..103</a> %H A163074 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011. %H A163074 Peter Luschny, <a href="http://www.luschny.de/math/primes/SwingingPrimes.html"> Swinging Primes.</a> %e A163074 3$ + 1 = 7 is prime, so 7 is in the sequence. (Here '$' denotes the swinging factorial function.) %p A163074 # Seq with arguments <= n: %p A163074 a := proc(n) select(isprime,map(x -> A056040(x)+1,[$1..n])); %p A163074 select(isprime,map(x -> A056040(x)-1,[$1..n])); %p A163074 sort(convert(convert(%%,set) union convert(%,set),list)) end: %t A163074 Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f - 1], Sow[p]]; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 45}]][[2, 1]] // Union (* _Jean-François Alcover_, Jun 28 2013 *) %Y A163074 Cf. A088054, A163075, A163076. %K A163074 nonn %O A163074 1,1 %A A163074 _Peter Luschny_, Jul 21 2009 %E A163074 More terms from _Jinyuan Wang_, Mar 22 2020